Part Number Hot Search : 
A8904 50A02MH CA12059 1N4933G R1620 PSMS12 F1604 FR607G
Product Description
Full Text Search
 

To Download A3PE600-2PQ100ES Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  january 2013 i ? 2013 microsemi corporation proasic3e flash family fpgas with optional soft arm support features and benefits high capacity ? 600 k to 3 million system gates ? 108 to 504 kbits of true dual-port sram ? up to 620 user i/os reprogrammable flash technology ? 130-nm, 7-layer metal (6 copper), flash-based cmos process ? instant on level 0 support ? single-chip solution ? retains programmed design when powered off on-chip user nonvolatile memory ? 1 kbit of flashrom with synchronous interfacing high performance ? 350 mhz system performance ? 3.3 v, 66 mhz 64-bit pci in-system programming (isp) and security ? isp using on-chip 128-bit advanced encryption standard (aes) decryption via jt ag (ieee 1532?compliant) ? flashlock ? designed to secure fpga contents low power ? core voltage for low power ? support for 1.5-v-only systems ? low-impedance flash switches high-performance r outing hierarchy ? segmented, hierarchical routing and clock structure ? ultra-fast local and long-line network ? enhanced high-speed, very-long-line network ? high-performance, low-skew global network ? architecture supports ultra-high utilization pro (professional) i/o ? 700 mbps ddr, lvds-capable i/os ? 1.5 v, 1.8 v, 2.5 v, and 3.3 v mixed-voltage operation ? bank-selectable i/o voltages?up to 8 banks per chip ? single-ended i/o standards: lvttl, lvcmos 3.3 v / 2.5 v / 1.8 v / 1.5 v, 3.3 v pci / 3.3 v pci-x, and lvcmos 2.5 v / 5.0 v input ? differential i/o standards: lvpecl, lvds, b-lvds, and m-lvds ? voltage-referenced i/o standards: gtl+ 2.5 v / 3.3 v, gtl 2.5 v / 3.3 v, hstl class i and ii, sstl2 class i and ii, sstl3 class i and ii ? i/o registers on input, output, and enable paths ? hot-swappable and cold sparing i/os ? programmable output slew rate and drive strength ? programmable input delay ? schmitt trigger option on single-ended inputs ? weak pull-up/-down ? ieee 1149.1 (jtag) boundary scan test ? pin-compatible packages across the proasic ? 3e family clock conditioning circuit (ccc) and pll ? six ccc blocks, each with an integrated pll ? configurable phase-shift, multiply/divide, delay capabilities and external feedback ? wide input frequency range (1.5 mhz to 350 mhz) srams and fifos ? variable-aspect-ratio 4,608-bit ram blocks (1, 2, 4, 9, and 18 organizations available) ? true dual-port sram (except 18) ? 24 sram and fifo configurations with synchronous operation up to 350 mhz arm ? processor support in proasic3e fpgas ? m1 proasic3e devices?cortex-m1 soft processor available with or without debug table 1-1 ? proasic3e product family proasic3e devices a3 pe600 a3pe1500 a3pe3000 cortex-m1 devices 1 m1a3pe1500 m1a3pe3000 system gates 600,000 1,500,000 3,000,000 versatiles (d-flip-flops) 13,824 38,400 75,264 ram kbits (1,024 bits) 108 270 504 4,608-bit blocks 24 60 112 flashrom kbits 11 1 secure (aes) isp yes yes yes cccs with integrated plls 2 66 6 versanet globals 3 18 18 18 i/o banks 88 8 maximum user i/os 270 444 620 package pins pqfp fbga pq208 fg256, fg484 pq208 fg484, fg676 pq208 fg324 , fg484, fg896 notes: 1. refer to the cortex-m1 product brief for more information. 2. the pq208 package supports six cccs and two plls. 3. six chip (main) and three quadrant global networks are available. 4. for devices supporting lower densities, refer to the proasic3 flash family fpgas datasheet. revision 13
proasic3e flash family fpgas ii revision 13 i/os per package 1 proasic3e device status proasic3e devices a3pe600 a3pe1500 3 a3pe3000 3 cortex-m1 devices 2 m1a3pe1500 m1a3pe3000 package i/o types single-ended i/o 1 differential i/o pairs single-ended i/o 1 differential i/o pairs single-ended i/o 1 differential i/o pairs pq208 147 65 147 65 147 65 fg256 16579???? fg324 ????221110 fg484 270 135 280 139 341 168 fg676 ? ? 444 222 ? ? fg896 ????620310 notes: 1. when considering migrating your design to a lower- or higher-density device, refer to the proasic3e fpga fabric user?s guide to ensure compliance with design and board migration requirements. 2. each used differential i/o pair reduces t he number of single-ended i/os available by two. 3. for a3pe1500 and a3pe3000 devices, the usage of certain i/o standards is limited as follows: ? sstl3(i) and (ii): up to 40 i/ os per north or south bank ? lvpecl / gtl+ 3.3 v / gtl 3.3 v: up to 48 i/os per nort h or south bank ? sstl2(i) and (ii) / gtl+ 2.5 v/ gtl 2.5 v: up to 72 i/os per north or south bank 4. fg256 and fg484 are footprint-compatible packages. 5. when using voltage-referenced i/o standards, one i/o pin should be assigned as a voltage-referenced pin (vref) per minibank (group of i/os). 6. "g" indicates rohs-compliant packages. refer to the "proasic3e ordering information" on page iii for the location of the "g" in the part number. table 1-2 ? proasic3e fpgas package sizes dimensions package pq208 fg256 fg324 fg484 fg676 fg896 length width (mm\mm) 28 28 17 17 19 19 23 23 27 27 31 31 nominal area (mm 2 ) 784 289 361 529 729 961 pitch (mm) 0.5 1.0 1.0 1.0 1.0 1.0 height (mm) 3.40 1.60 1.63 2.23 2.23 2.23 proasic3e devices status m1 proasic3e devices status a3pe600 production a3pe1500 production m1a3pe1500 production a3pe3000 production m1a3pe3000 production
proasic3e flash family fpgas revision 13 iii proasic3e ordering information a3pe3000 fg _ part number speed grade 1 1 = 15% faster than standard 2 = 25% faster than standard package type pq = plastic quad flat pack (0.5 mm pitch) fg = fine pitch ball grid array (1.0 mm pitch) 896 i y package lead count application (temperature range) blank = commercial (0c to +70c ambient temperature) i = industrial (?40c to +85c ambient temperature) pp = pre-production es = engineering sample (room temperature only) 600,000 system gates a3pe600 = 1,500,000 system gates a3pe1500 = 3,000,000 system gates a3pe3000 = 1,500,000 system gates m1a3pe1500 = 3,000,000 system gates m1a3pe3000 = g lead-free packaging blank = standard packaging g = rohs-compliant (green) packaging proasic3e devices proasic3e devices with cortex-m1 security feature y = device includes license to implement ip based on the cryptography research, inc. (cri) patent portfolio blank = device does not include license to implement ip based on the cryptography research, inc. (cri) patent portfolio
proasic3e flash family fpgas iv revision 13 temperature grade offerings speed grade and temperature grade matrix references made to proasic3e devices also apply to arm-enable d proasic3e devices. the arm-enabled part numbers start with m1 (cortex-m1). contact your local microsemi soc products gr oup representative for device availability: http://www.microsemi.com/soc/contact/default.aspx . package a3pe600 a3pe1500 a3pe3000 cortex-m1 devices m1a3pe1500 m1a3pe3000 pq208 c, i c, i c, i fg256 c, i ? ? fg324 ? ? c, i fg484 c, i c, i c, i fg676 ? c, i ? fg896 ? ? c, i note: c = commercial temperature range: 0c to 70c ambient temperature i = industrial temperature range: ?40c to 85c ambient temperature temperature grade std. ?1 ?2 c 1 ??? i 2 ??? notes: 1. c = commercial temperature range: 0c to 70c ambient temperature 2. i = industrial temperature range: ?40c to 85c ambient temperature
proasic3e flash family fpgas revision 13 v table of contents proasic3e device family overview general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 proasic3e dc and switch ing characteristics general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 calculating power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 user i/o characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 versatile characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63 global resource characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-67 clock conditioning circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69 embedded sram and fifo characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-71 embedded flashrom characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-82 jtag 1532 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-82 pin descriptions and packaging supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 user-defined supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 user pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 jtag pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 special function pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 related documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 package pin assignments pq208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 fg256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 fg324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12 fg484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16 fg676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32 fg896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-40 datasheet information list of changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 datasheet categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 safety critical, life support, and high-reliability applications policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11

revision 13 1-1 1 ? proasic3e device family overview general description proasic3e, the third-generation fa mily of microsemi flash fpgas, offers performance, density, and features beyond thos e of the proasic plus ? family. nonvolatile flash technology gives proasic3e devices the advantage of being a secure, low power, si ngle-chip solution that is instant on. proasic3e is reprogrammable and offers time-to -market benefits at an asic-level unit cost. these features enable designers to create high-density systems using ex isting asic or fpga design flows and tools. proasic3e devices offer 1 kbit of on-chip, progr ammable, nonvolatile flashrom storage as well as clock conditioning circuitry based on six integrated phase-locked lo ops (plls). proasic3e devices have up to three million system gates, sup ported with up to 504 kbits of true dual-port sram and up to 620 user i/os. several proasic3e devices support the cortex-m1 soft ip cores, and the arm-enabled devices have microsemi ordering numbers that begin with m1a3pe. flash advantages reduced cost of ownership advantages to the designer extend beyond low unit cost, performance, and ease of use. unlike sram- based fpgas, flash-based proasic3e devices allow all functionality to be instant on; no external boot prom is required. on-boa rd security mechanisms prevent access to all the programming information and enable secure remote updates of the fpga logic. designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (ip) cannot be compromised or copied. secure isp can be performed using the industry-standard aes algorithm. the proasic3e family device architecture mi tigates the need for asic migration at higher user volumes. this makes the proasic3e family a cost-effective asic replacement solution, especially for applications in the cons umer, networking/ communic ations, computing, and avionics markets. security the nonvolatile, flash-based proasic3e devices do not require a boot prom, so there is no vulnerable external bitstream that can be easily copied. proa sic3e devices incorporate flashlock, which provides a unique combination of reprogrammability and desi gn security without external overhead, advantages that only an fpga with nonvolatile flash programming can offer. proasic3e devices utilize a 128-bit flash-based lock and a separate aes key to provide the highest level of protection in the fpga indus try for programmed intellectual pr operty and configuration data. in addition, all flashrom data in proasic3e devices c an be encrypted prior to loading, using the industry- leading aes-128 (fips192) bit block cipher encryptio n standard. the aes standard was adopted by the national institute of standards and technology (n ist) in 2000 and replaces the 1977 des standard. proasic3e devices have a built-in aes decryption e ngine and a flash-based aes key that make them the most comprehensive programmable logic device security solution available today. proasic3e devices with aes-based security provide a high level of protection for secure, remote field updates over public networks such as the internet, and ensure that valuable ip remains out of the hands of system overbuilders, system clon ers, and ip thieves. security, built into the fpga fabric, is an inherent component of the proasic3e family. the flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. the proasic3e family, with flashlock and aes security, is unique in being highly resi stant to both invasive and noninvasive attacks. your valuable ip is protected with industry-standard security, making remote isp possible. a proasic3e device provides the best available security for programmable logic designs.
proasic3e device family overview 1-2 revision 13 single chip flash-based fpgas store their configuration informati on in on-chip flash cells. once programmed, the configuration data is an inherent part of the fpga st ructure, and no external configuration data needs to be loaded at system power-up (unl ike sram-based fpgas). therefor e, flash-based proasic3e fpgas do not require system configurati on components such as eeproms or mi crocontrollers to load device configuration data. this reduces bill-of-materials co sts and pcb area, and incr eases security and system reliability. instant on flash-based proasic3e devices support level 0 of the instant on classification standard. this feature helps in system component initializa tion, execution of critical tasks be fore the processor wakes up, setup and configuration of memory blocks, clock genera tion, and bus activity management. the instant on feature of flash-based proasic3e devices greatly simplifies total system design and reduces total system cost, often eliminating the need for cplds and clock generati on plls that ar e used for these purposes in a system. in addition, glitches and brownouts in system power will not corrupt the proasic3e device's flash configuration, and unlik e sram-based fpgas, the device will not have to be reloaded when system power is restored. this enabl es the reduction or complete removal of the configuration prom, expensive voltage monitor, br ownout detection, and clock generator devices from the pcb design. flash-based proasi c3e devices simplify total system design and reduce cost and design risk while increas ing system reliability and impr oving system init ialization time. firm errors firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an sram fpga. the energ y of the collision can ch ange the state of the configuration cell and thus change t he logic, routing, or i/o behavior in an unpredictable way. these errors are impossible to prevent in sram fpgas. the consequence of this type of error can be a complete system failure. firm errors do not exist in the configuration memory of proasic3e flash-based fpgas. once it is programmed, the flash cell configuration element of proasic3e fpgas cannot be altered by high-energy neutrons and is therefore im mune to them. recoverable (or soft) errors occur in the user data sram of all fpga devices. these can easily be mitigated by using error detection and correction (edac) circuitry built into the fpga fabric. low power flash-based proasic3e devices exhibit power characte ristics similar to an asic, making them an ideal choice for power-sensitive applicat ions. proasic3e devices have only a very limited power-on current surge and no high-current transition peri od, both of which occur on many fpgas. proasic3e devices also have low dynamic power consumption to further maximize power savings. advanced flash technology the proasic3e family offers many benefits, incl uding nonvolatility and reprogrammability through an advanced flash-based, 130-nm lvcmos process with seven layers of metal. standard cmos design techniques are used to implement logic and contro l functions. the combination of fine granularity, enhanced flexible routing resources, and abundant fl ash switches allows for very high logic utilization without compromising device routability or perform ance. logic functions within the device are interconnected through a four-level routing hierarchy.
proasic3e flash family fpgas revision 13 1-3 advanced architecture the proprietary proasic3e architecture provides granularity comparable to standard-cell asics. the proasic3e device consists of five distinct and programmable architectural features ( figure 1-1 on page 3 ): ? fpga versatiles ? dedicated flashrom ? dedicated sram/fifo memory ? extensive cccs and plls ? pro i/o structure the fpga core consists of a sea of versatiles. each versatile can be configured as a three-input logic function, a d-flip-flop (with or without enable), or a latch by progr amming the appropriate flash switch interconnections. the versatility of the proasic3e core tile as either a three-input lookup table (lut) equivalent or as a d-flip-flop/latch with enable allows for efficient use of the fpga fabric. the versatile capability is unique to the proasic family of thir d-generation architecture fl ash fpgas. versatiles are connected with any of the four leve ls of routing hierarchy. flash swit ches are distributed throughout the device to provide nonvolatile, reconfigurable inte rconnect programming. maximum core utilization is possible for virtually any design. figure 1-1 ? proasic3e device architecture overview 4,608-bit dual-port sram or fifo block versatile ram block ccc pro i/os isp aes decryption user nonvolatile flashrom charge pumps 4,608-bit dual-port sram or fifo block ram block
proasic3e device family overview 1-4 revision 13 versatiles the proasic3e core consists of versatiles , which have been enhanced beyond the proasic plus ? core tiles. the proasic3e versatile supports the following: ? all 3-input logic functions?lut-3 equivalent ? latch with clear or set ? d-flip-flop with clear or set ? enable d-flip-flop with clear or set refer to figure 1-2 for versatile configurations. user nonvolatile flashrom proasic3e devices have 1 kbit of on-chip, user-acc essible, nonvolatile flashrom. the flashrom can be used in diverse system applications: ? internet protocol addressing (wireless or fixed) ? system calibration settings ? device serialization and/or inventory control ? subscription-based business models (for example, set-top boxes) ? secure key storage for secure communications algorithms ? asset management/tracking ? date stamping ? version management the flashrom is written using the standard pro asic3e ieee 1532 jtag programming interface. the core can be individually programmed (erased and written), and on-chip aes decryption can be used selectively to securely load data over public networks, as in security keys stored in the flashrom for a user design. the flashrom can be programmed via the jtag progr amming interface, and its contents can be read back either through the jtag programming interface or via direct fpga core addressing. note that the flashrom can only be programmed from the jtag interface and cannot be programmed from the internal logic array. the flashrom is programmed as 8 banks of 128 bits ; however, reading is performed on a byte-by-byte basis using a synchronous interface. a 7-bit address fr om the fpga core defines which of the 8 banks and which of the 16 bytes within that bank are being read. the three most significant bits (msbs) of the flashrom address determine the bank, and the four least significant bits (lsbs) of the flashrom address define the byte. the proasic3e development software solutions, libero ? system-on-chip (soc) and designer, have extensive support for the flashrom. one such feat ure is auto-generation of sequential programming files for applications requiring a unique serial number in each part. another feature allows the inclusion of static data for system version contro l. data for the flashr om can be generated qu ickly and easily using libero soc and designer software tools. comprehe nsive programming file support is also included to allow for easy programming of large numbers of parts with differing flashrom contents. figure 1-2 ? versatile configurations x1 y x2 x3 lut-3 data y clk enable clr d-ff data y clk clr d-ff lut-3 equivalent d-flip-flop with clear or set enable d-flip-flop with clear or set
proasic3e flash family fpgas revision 13 1-5 sram and fifo proasic3e devices have embedded sram blocks along their north and south sides. each variable- aspect-ratio sram block is 4,608 bits in size. av ailable memory configurations are 25618, 5129, 1k4, 2k2, and 4k1 bits. the individual blocks have independent read and write ports that can be configured with different bit widths on each port. for ex ample, data can be sent through a 4-bit port and read as a single bitstream. the embedded sram bl ocks can be initialized via the device jtag port (rom emulation mode) using the ujtag macro. in addition, every sram block has an embedded fi fo control unit. the contro l unit allows the sram block to be configured as a synchronous fifo with out using additional core versatiles. the fifo width and depth are programmable. the fifo also feat ures programmable almost empty (aempty) and almost full (afull) flags in addition to the norma l empty and full flags. the embedded fifo control unit contains the counters necessary for generati on of the read and write address pointers. the embedded sram/fifo blocks can be cascaded to create larger configurations. pll and ccc proasic3e devices provide designers with very flexib le clock conditioning capabilities. each member of the proasic3e family contains six cccs, each with an integrated pll. the six ccc blocks are located at the four corners and the centers of the east and west sides. to maximize user i/os, only the center east and west plls are available in devices using the pq208 package. however, all six ccc blocks are still usable; the four corner cccs allow simple clock delay operations as well as clock spine access. the inputs of the six ccc blocks are accessible from the fpga core or from one of several inputs located near the ccc that have dedicated connections to the ccc block. the ccc block has these key features: ? wide input frequency range (f in_ccc ) = 1.5 mhz to 350 mhz ? output frequency range (f out_ccc ) = 0.75 mhz to 350 mhz ? clock delay adjustment via programmable a nd fixed delays from ?7.56 ns to +11.12 ns ? 2 programmable delay types for clock skew minimization ? clock frequency synthesis additional ccc specifications: ? internal phase shift = 0, 90, 180, and 270. output phase shift depends on the output divider configuration. ? output duty cycle = 50% 1.5% or better ? low output jitter: worst case < 2.5% clock per iod peak-to-peak period jitter when single global network used ? maximum acquisition time = 300 s ? low power consumption of 5 mw ? exceptional tolerance to input period jitter? allowable input jitter is up to 1.5 ns ? four precise phases; maximum misalignment between adjacent phases of 40 ps (350 mhz / f out_ccc ) global clocking proasic3e devices have extensive s upport for multiple clocking domains. in addition to the ccc and pll support described above, there is a comp rehensive global clock distribution network. each versatile input and output port has access to nine versanets: six chip (main) and three quadrant global networks. the versanets can be driven by the ccc or directly accessed from the core via multiplexers (muxes). the versanets can be used to distribute low-skew clock signals or for rapid distribution of high fanout nets.
proasic3e device family overview 1-6 revision 13 pro i/os with advanced i/o standards the proasic3e family of fpgas feat ures a flexible i/o structure, s upporting a range of voltages (1.5 v, 1.8 v, 2.5 v, and 3.3 v). proasic3e fpgas support 19 different i/o standards, including single-ended, differential, and voltage-referenced. the i/os are or ganized into banks, with eight banks per device (two per side). the configuration of these banks determines the i/o standards supported. each i/o bank is subdivided into vref minibanks, which are used by voltage-referenced i/os. vref minibanks contain 8 to 18 i/os. all the i/os in a given minibank share a common vref line. therefore, if any i/o in a given vref minibank is configured as a vref pin, the remain ing i/os in that minibank will be able to use that reference voltage. each i/o module contains several input, output, and enable registers. these registers allow the implementation of the following: ? single-data-rate applications (e.g., pci 66 mhz, bidirectional sstl 2 and 3, class i and ii) ? double-data-rate applications (e.g., ddr lvds , b-lvds, and m-lvds i/os for point-to-point communications, and ddr 200 mhz sram using bidirectional hstl class ii) proasic3e banks support m-lvds with 20 multi-drop points. hot-swap (also called hot-plug, or hot-insertion) is t he operation of hot-insertion or hot-removal of a card in a powered-up system. cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating. specifying i/o states during programming you can modify the i/o states during programming in fl ashpro. in flashpro, this feature is supported for pdb files generated from designer v8.5 or greater. see the flashpro user?s guide for more information. note: pdb files generated from designer v8.1 to designer v8.4 (including all service packs) have limited display of pin numbers only. 1. load a pdb from the flashpro gui. you must have a pdb loaded to modify the i/o states during programming. 2. from the flashpro gui, click pdb configurat ion. a flashpoint ? pr ogramming file generator window appears. 3. click the specify i/o states during programming button to display the specify i/o states during programming dialog box. 4. sort the pins as desired by clicking any of the column headers to sort the entries by that header. select the i/os you wish to modify ( figure 1-3 on page 1-7 ). 5. set the i/o output state. you can set basic i/o se ttings if you want to use the default i/o settings for your pins, or use custom i/o settings to cust omize the settings for each pin. basic i/o state settings: 1 ? i/o is set to drive out logic high 0 ? i/o is set to drive out logic low last known state ? i/o is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming z -tri-state: i/o is tristated
proasic3e flash family fpgas revision 13 1-7 6. click ok to return to the flashpoi nt ? programming file generator window. i/o states during programming are saved to the adb and resulting programming files after completing programming file generation. figure 1-3 ? i/o states during programming window

revision 13 2-1 2 ? proasic3e dc and switching characteristics general specifications dc and switching characteristics for ?f speed grade targets are based only on simulation. the characteristics provided for the ?f speed grade are subject to change after establishing fpga specifications. some restrictions might be added and will be reflected in future revisions of this document. the ?f speed grade is only suppo rted in the commercial temperature range. operating conditions stresses beyond those listed in ta b l e 2 - 1 may cause permanent damage to the device. exposure to absolute maximum rating conditions for extended periods may affect device reliability. absolute maximum ratings are stress ratings only; functional operation of th e device at these or any other conditions beyond those listed under the recommended o perating conditions specified in table 2-2 on page 2-2 is not implied . table 2-1 ? absolute maximum ratings symbol parameter limits units vcc dc core supply voltage ?0.3 to 1.65 v vjtag jtag dc voltage ?0.3 to 3.75 v vpump programming voltage ?0.3 to 3.75 v vccpll analog power supply (pll) ?0.3 to 1.65 v vcci 2 dc i/o output buffer supply voltage ?0.3 to 3.75 v vmv 2 dc i/o input buffer supply voltage ?0.3 to 3.75 v vi i/o input voltage ?0.3 v to 3.6 v (when i/o hot insertion mode is enabled) ?0.3 v to (vcci + 1 v) or 3.6 v, whichever voltage is lower (when i/o hot-insertion mode is disabled) v t stg 3 storage temperature ?65 to +150 c t j 3 junction temperature +125 c notes: 1. the device should be operated within the limits specified by the datasheet. during transitions, the input signal may undershoot or overshoot according to the limits shown in table 2-3 on page 2-2 . 2. vmv pins must be connected to the corresponding vcci pins. see the "vmvx i/o supply voltage (quiet)" section on page 3-1 for further information. 3. for flash programming and retention maximum limits, refer to table 2-3 on page 2-2 , and for recommended operating limits, refer to table 2-2 on page 2-2 .
proasic3e dc and switching characteristics 2-2 revision 13 table 2-2 ? recommended operating conditions 1 symbol parameter commercial industrial units t a ambient temperature 0 to +70 ?40 to +85 c t j junction temperature 0 to +85 ?40 to +100 c vcc 1.5 v dc core supply voltage 1.425 to 1.575 1.425 to 1.575 v vjtag jtag dc voltage 1.4 to 3.6 1.4 to 3.6 v vpump programming voltage programming mode 2 3.15 to 3.45 3.15 to 3.45 v operation 3 0 to 3.6 0 to 3.6 v vccpll analog power supply (pll) 1.425 to 1.575 1.425 to 1.575 v vcci and vmv 4 1.5 v dc supply voltage 1.425 to 1.575 1.425 to 1.575 v 1.8 v dc supply voltage 1.7 to 1.9 1.7 to 1.9 v 2.5 v dc supply voltage 2.3 to 2.7 2.3 to 2.7 v 3.3 v dc supply voltage 3.0 to 3.6 3.0 to 3.6 v 3.0 v dc supply voltage 5 2.7 to 3.6 2.7 to 3.6 v lvds/b-lvds/m-lvds differential i/o 2.375 to 2.625 2.375 to 2.625 v lvpecl differential i/o 3.0 to 3.6 3.0 to 3.6 v notes: 1. all parameters representing voltages are measured with respect to gnd unless otherwise specified. 2. the programming temperat ure range supported is t ambient = 0c to 85c. 3. vpump can be left floating during nor mal operation (not programming mode). 4. the ranges given here are for power supplies only. th e recommended input voltage ranges specific to each i/o standard are given in table 2-13 on page 2-16 . vmv and vcci should be at the same voltage within a given i/o bank. vmv pins must be connected to the corresponding vcci pins. see the "vmvx i/o supply voltage (quiet)" section on page 3-1 for further information. 5. to ensure targeted reliability standards are met across ambient and junction operating temperatures, microsemi recommends that the user follow best design practices using microsemi?s timing and power simulation tools. 6. 3.3 v wide range is compliant to the jesd8-b specification and supports 3.0 v vcci operation. table 2-3 ? flash programming limits ? retention, storage and operating temperature 1 product grade programming cycles program retention (biased/unbiased) maximum storage temperature t stg (c) 2 maximum operating junction temperature t j (c) 2 commercial 500 20 years 110 100 industrial 500 20 years 110 100 notes: 1. this is a stress rating only; functional operation at any condition other than those indicated is not implied. 2. these limits apply for program/data retention only. refer to table 2-1 on page 2-1 and table 2-2 for device operating conditions and absolute limits.
proasic3e flash family fpgas revision 13 2-3 i/o power-up and supply voltage thresholds for power-on reset (commercial and industrial) sophisticated power-up management circui try is designed into every proasic ? 3e device. these circuits ensure easy transition from the powered-off state to the powered-up state of the device. the many different supplies can power up in any sequence with mi nimized current spikes or surges. in addition, the i/o will be in a known state through the power-up sequence. the basic principle is shown in figure 2-1 on page 2-4 . there are five regions to consider during power-up. proasic3e i/os are activated only if all of the following three conditions are met: 1. vcc and vcci are above the minimum specified trip points ( figure 2-1 on page 2-4 ). 2. vcci > vcc ? 0.75 v (typical) 3. chip is in the operating mode. v cci trip point: ramping up: 0.6 v < trip_point_up < 1.2 v ramping down: 0.5 v < trip_point_down < 1.1 v v cc trip point: ramping up: 0.6 v < trip_point_up < 1.1 v ramping down: 0.5 v < trip_point_down < 1 v vcc and vcci ramp-up trip points are about 100 mv hi gher than ramp-down trip points. this specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. note the following: ? during programming, i/os become tristated and weakly pulled up to vcci. ? jtag supply, pll power supplies, and charge pump vpump supply have no influence on i/o behavior. table 2-4 ? overshoot and undershoot limits 1 vcci and vmv average vcci?gnd overshoot or undershoot duration as a percentage of clock cycle 2 maximum overshoot/ undershoot 2 2.7 v or less 10% 1.4 v 5% 1.49 v 3 v 10% 1.1 v 5% 1.19 v 3.3 v 10% 0.79 v 5% 0.88 v 3.6 v 10% 0.45 v 5% 0.54 v notes: 1. based on reliability requirements at 85c. 2. the duration is allowed at one out of si x clock cycles. if the overshoot/unders hoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 v. 3. this table does not provide pci overshoot/undershoot limits.
proasic3e dc and switching characteristics 2-4 revision 13 pll behavior at brownout condition microsemi recommends using monotonic power su pplies or voltage regulators to ensure proper power-up behavior. power ramp-up should be mo notonic at least until vcc and vccplxl exceed brownout activation levels. the vcc activation level is specified as 1.1 v worst-case (see figure 2-1 on page 2-4 for more details). when pll power supply voltage and/or vcc levels drop below the vcc brownout levels (0.75 v 0.25 v), the pll output lock signal goes low and/or the output clock is lost. refer to the "power-up/-down behavior of low power flash devices" chapter of the proasic3e fpga fabric user?s guide for information on clock and lock recovery. internal power-up activation sequence 1. core 2. input buffers 3. output buffers, after 200 ns delay from input buffer activation figure 2-1 ? i/o state as a function of vcci and vcc voltage levels region 1: i/o buffers are off region 2: i/o buffers are on. i/os are functional (except differential inputs) but slower because vcci / vcc are below specification. for the same reason, input buffers do not meet vih / vil levels, and output buffers do not meet voh / vol levels. min vcci datasheet specification voltage at a selected i/o standard; i.e., 1.425 v or 1.7 v or 2.3 v or 3.0 v vcc vcc = 1.425 v region 1: i/o buffers are off activation trip point: v a = 0.85 v 0.25 v deactivation trip point: v d = 0.75 v 0.25 v activation trip point: v a = 0.9 v 0.3 v deactivation trip point: v d = 0.8 v 0.3 v vcc = 1.575 v region 5: i/o buffers are on and power supplies are within specification. i/os meet the entire datasheet and timer specifications for speed, vih / vil, voh / vol, etc. region 4: i/o buffers are on. i/os are functional (except differential but slower because vcci is below specification. for the same reason, input buffers do not meet vih / vil levels, and output buffers do not meet voh / vol levels. where vt can be from 0.58 v to 0.9 v (typically 0.75 v) vcci region 3: i/o buffers are on. i/os are functional; i/o dc specifications are met, but i/os are slower because the vcc is below specification. vcc = vcci + vt
proasic3e flash family fpgas revision 13 2-5 thermal characteristics introduction the temperature variable in designer software refe rs to the junction temperature, not the ambient temperature. this is an importan t distinction because dynamic and st atic power consumption cause the chip junction to be higher than the ambient temperature. eq 1 can be used to calculate junction temperature. t j = junction temperature = ? t + t a eq 1 where: t a = ambient temperature ? t = temperature gradient between junction (silicon) and ambient ? t = ? ja * p ? ja = junction-to-ambient of the package. ? ja numbers are located in table 2-5 . p = power dissipation package thermal characteristics the device junction-to-case thermal resistivity is ? jc and the junction-to-ambient air thermal resistivity is ? ja . the thermal characteristics for ? ja are shown for two air flow rates. the absolute maximum junction temperature is 110c. eq 2 shows a sample calculation of the absolute maximum power dissipation allowed for an 896-pin fbga package at commercial temperature and in still air. eq 2 temperature and voltage derating factors maximum power allowed max. junction temp. ( ? c) max. ambient temp. ( ? c) ? ? ja ( ? c/w) ------------------------------------------------------------------------------------------------------------------------------- -- 110 ? c70 ? c ? 13.6 ? c/w ---------------------------------- - 5.88 w = = = table 2-5 ? package thermal resistivities package type pin count ? jc ? ja units still air 200 ft./min. 500 ft./min. plastic quad flat package (pqfp) 208 8.0 26.1 22.5 20.8 c/w plastic quad flat package (pqfp) with embedded heat spreader 208 3.8 16.2 13.3 11.9 c/w fine pitch ball grid array (fbga) 256 3.8 26.9 22.8 21.5 c/w 484 3.2 20.5 17.0 15.9 c/w 676 3.2 16.4 13.0 12.0 c/w 896 2.4 13.6 10.4 9.4 c/w table 2-6 ? temperature and voltage derati ng factors for timing delays (normalized to t j = 70c, vcc = 1.425 v) array voltage vcc (v) junction temperature (c) ?40c 0c 25c 70c 85c 100c 1.425 0.87 0.92 0.95 1.00 1.02 1.04 1.500 0.83 0.88 0.90 0.95 0.97 0.98 1.575 0.80 0.85 0.87 0.92 0.93 0.95
proasic3e dc and switching characteristics 2-6 revision 13 calculating power dissipation quiescent supply current power per i/o pin table 2-7 ? quiescent supply current characteristics a3pe600 a3pe1500 a3pe3000 typical (25c) 5 ma 12 ma 25 ma maximum (commercial) 30 ma 70 ma 150 ma maximum (industrial) 45 ma 105 ma 225 ma notes: 1. idd includes vcc, vpump, vcci, and vmv currents. values do not include i/o static contribution, which is shown in table 2-8 and table 2-9 on page 2-7 . 2. ?f speed grade devices may experience higher standby idd of up to five times the standard idd and higher i/o leakage. table 2-8 ? summary of i/o input buffe r power (per pin) ? defa ult i/o software settings vmv (v) static power pdc2 (mw) 1 dynamic power pac9 (w/mhz) 2 single-ended 3.3 v lvttl/lvcmos 3.3 ? 17.39 3.3 v lvttl/lvcmos ? schmitt trigger 3.3 ? 25.51 3.3 v lvttl/lvcmos wide range 3 3.3 ? 16.34 3.3 v lvttl/lvcmos wide range ? schmitt trigger 3 3.3 ? 24.49 2.5 v lvcmos 2.5 ? 5.76 2.5 v lvcmos ? schmitt trigger 2.5 ? 7.16 1.8 v lvcmos 1.8 ? 2.72 1.8 v lvcmos ? schmitt trigger 1.8 ? 2.80 1.5 v lvcmos (jesd8-11) 1.5 ? 2.08 1.5 v lvcmos (jesd8-11) ? schmitt trigger 1.5 ? 2.00 3.3 v pci 3.3 ? 18.82 3.3 v pci ? schmitt trigger 3.3 ? 20.12 3.3 v pci-x 3.3 ? 18.82 3.3 v pci-x ? schmitt trigger 3.3 ? 20.12 voltage-referenced 3.3 v gtl 3.3 2.90 8.23 2.5 v gtl 2.5 2.13 4.78 3.3 v gtl+ 3.3 2.81 4.14 2.5 v gtl+ 2.5 2.57 3.71 notes: 1. pdc2 is the static power (where applicable) measured on vmv. 2. pac9 is the total dynamic power measured on vcc and vmv. 3. all lvcmos 3.3 v software macros support lvcmos 3.3 v wide range as specified in the jesd8b specification.
proasic3e flash family fpgas revision 13 2-7 hstl (i) 1.5 0.17 2.03 hstl (ii) 1.5 0.17 2.03 sstl2 (i) 2.5 1.38 4.48 sstl2 (ii) 2.5 1.38 4.48 sstl3 (i) 3.3 3.21 9.26 sstl3 (ii) 3.3 3.21 9.26 differential lvds/b-lvds/m-lvds 2.5 2.26 1.50 lvpecl 3.3 5.71 2.17 table 2-9 ? summary of i/o output bu ffer power (per pin) ? de fault i/o softw are settings 1 c load (pf) vcci (v) static power pdc3 (mw) 2 dynamic power pac10 (w/mhz) 3 single-ended 3.3 v lvttl/lvcmos 35 3.3 ? 474.70 3.3 v lvttl/lvcmos wide range 4 35 3.3 ? 474.70 2.5 v lvcmos 35 2.5 ? 270.73 1.8 v lvcmos 35 1.8 ? 151.78 1.5 v lvcmos (jesd8-11) 35 1.5 ? 104.55 3.3 v pci 10 3.3 ? 204.61 3.3 v pci-x 10 3.3 ? 204.61 voltage-referenced 3.3 v gtl 10 3.3 ? 24.08 2.5 v gtl 10 2.5 ? 13.52 3.3 v gtl+ 10 3.3 ? 24.10 2.5 v gtl+ 10 2.5 ? 13.54 hstl (i) 20 1.5 7.08 26.22 hstl (ii) 20 1.5 13.88 27.22 sstl2 (i) 30 2.5 16.69 105.56 sstl2 (ii) 30 2.5 25.91 116.60 notes: 1. dynamic power consumption is given for standard load and software default drive strength and output slew. 2. pdc3 is the static power (where applicable) measured on vcci. 3. pac10 is the total dynamic power measured on vcc and vcci. 4. all lvcmos 3.3 v software macros support lvcmos 3.3 v wide range as specified in the jesd8-b specification. table 2-8 ? summary of i/o input buffer po wer (per pin) ? default i/o software settings (continued) vmv (v) static power pdc2 (mw) 1 dynamic power pac9 (w/mhz) 2 notes: 1. pdc2 is the static power (where applicable) measured on vmv. 2. pac9 is the total dynamic power measured on vcc and vmv. 3. all lvcmos 3.3 v software macros support lvcmos 3.3 v wide range as specified in the jesd8b specification.
proasic3e dc and switching characteristics 2-8 revision 13 power consumption of vari ous internal resources sstl3 (i) 30 3.3 26.02 114.87 sstl3 (ii) 30 3.3 42.21 131.76 differential lvds/b-lvds/m-lvds ? 2.5 7.70 89.62 lvpecl ? 3.3 19.42 168.02 notes: 1. dynamic power consumption is given for standard load and software default drive strength and output slew. 2. pdc3 is the static power (where applicable) measured on vcci. 3. pac10 is the total dynamic power measured on vcc and vcci. 4. all lvcmos 3.3 v software macros support lvcmos 3.3 v wide range as specified in the jesd8-b specification. table 2-9 ? summary of i/o output buffer power (per pin) ? default i/ o software setting s (continued) c load (pf) vcci (v) static power pdc3 (mw) 2 dynamic power pac10 (w/mhz) 3 table 2-10 ? different components contributing to the dynamic power consumption in proasic3e devices parameter definition device-specific dynamic contributions (w/mhz) a3pe600 a3pe1500 a3pe3000 pac1 clock contribution of a global rib 12.77 16.21 19.7 pac2 clock contribution of a global spine 1.85 3.06 4.16 pac3 clock contribution of a versatile row 0.88 pac4 clock contribution of a versatile used as a sequential module 0.12 pac5 first contribution of a versatile used as a sequential module 0.07 pac6 second contribution of a versatile used as a sequential module 0.29 pac7 contribution of a versatile used as a combinatorial module 0.29 pac8 average contribution of a routing net 0.70 pac9 contribution of an i/o input pin (standard-dependent) see table 2-8 on page 2-6 . pac10 contribution of an i/o out put pin (standard-dependent) see table 2-9 on page 2-7 pac11 average contribution of a ram block during a read operation 25.00 pac12 average contribution of a ram block during a write operation 30.00 pac13 static pll contribution 2.55 mw pac14 dynamic contribution for pll 2.60 note: for a different output load, drive strength, or slew rate, microsemi recommends using the microsemi power calculator or smartp ower in libero soc.
proasic3e flash family fpgas revision 13 2-9 power calculation methodology this section describes a simplified method to estima te power consumption of an application. for more accurate and detailed power estimations, use the smartpower tool in the libero soc software. the power calculation methodology described below uses the following variables: ? the number of plls as well as the number a nd the frequency of each output clock generated ? the number of combinatorial and sequential cells used in the design ? the internal clock frequencies ? the number and the standard of i/o pins used in the design ? the number of ram blocks used in the design ? toggle rates of i/o pins as well as versatiles?guidelines are provided in table 2-11 on page 2-11 . ? enable rates of output buffers?guidelines are provided for typical applications in table 2-12 on page 2-11 . ? read rate and write rate to the memory?guidel ines are provided for typical applications in table 2-12 on page 2-11 . the calculation should be repeated for each clock domain defined in the design. methodology total power consumption?p total p total = p stat + p dyn p stat is the total static power consumption. p dyn is the total dynamic power consumption. total static power consumption?p stat p stat = pdc1 + n inputs * pdc2 + n outputs * pdc3 n inputs is the number of i/o input buffers used in the design. n outputs is the number of i/o output buffers used in the design. total dynamic power consumption?p dyn p dyn = p clock + p s-cell + p c-cell + p net + p inputs + p outputs + p memory + p pll global clock contribution?p clock p clock = (pac1 + n spine * pac2 + n row * pac3 + n s-cell * pac4) * f clk n spine is the number of global spines used in the user design?guidelines are provided in the " spine architecture" section of the global resources chapter in the proasic3e fpga fabric user's guide . n row is the number of versatile rows used in the design?guidelines are provided in the " spine architecture" section of the global resources chapter in the proasic3e fpga fabric user's guide . f clk is the global clock signal frequency. n s-cell is the number of versatiles used as sequential modules in the design. pac1, pac2, pac3, and pac4 are device-dependent. sequential cells contribution?p s-cell p s-cell = n s-cell * (pac5 + ? 1 / 2 * pac6) * f clk n s-cell is the number of versatiles used as sequential modules in the design. when a multi-tile sequential cell is used, it should be accounted for as 1. ? 1 is the toggle rate of versatile outputs?guidelines are provided in table 2-11 on page 2-11 . f clk is the global clock signal frequency.
proasic3e dc and switching characteristics 2-10 revision 13 combinatorial cells contribution?p c-cell p c-cell = n c-cell * ? 1 / 2 * pac7 * f clk n c-cell is the number of versatiles used as combinatorial modules in the design. ? 1 is the toggle rate of versatile outputs?guidelines are provided in table 2-11 on page 2-11 . f clk is the global clock signal frequency. routing net contribution?p net p net = (n s-cell + n c-cell ) * ? 1 / 2 * pac8 * f clk n s-cell is the number of versatiles used as sequential modules in the design. n c-cell is the number of versatiles used as combinatorial modules in the design. ? 1 is the toggle rate of versatile outputs?guidelines are provided in table 2-11 on page 2-11 . f clk is the global clock signal frequency. i/o input buffer contribution?p inputs p inputs = n inputs * ? 2 / 2 * pac9 * f clk n inputs is the number of i/o input buffers used in the design. ? 2 is the i/o buffer toggle rate?guidelines are provided in table 2-11 on page 2-11 . f clk is the global clock signal frequency. i/o output buffer contribution?p outputs p outputs = n outputs * ? 2 / 2 * ? 1 * pac10 * f clk n outputs is the number of i/o output buffers used in the design. ? 2 is the i/o buffer toggle rate?guidelines are provided in table 2-11 on page 2-11 . ? 1 is the i/o buffer enable rate?guidelines are provided in table 2-12 on page 2-11 . f clk is the global clock signal frequency. ram contribution?p memory p memory = pac11 * n blocks * f read-clock * ? 2 + pac12 * n block * f write-clock * ? 3 n blocks is the number of ram blocks used in the design. f read-clock is the memory read clock frequency. ? 2 is the ram enable rate for read operations?guidelines are provided in table 2-12 on page 2-11 . f write-clock is the memory write clock frequency. ? 3 is the ram enable rate for write operations?guidelines are provided in table 2-12 on page 2-11 . pll contribution?p pll p pll = pac13 + pac14 * f clkout f clkout is the output clock frequency. 1 1. the pll dynamic contribution depends on the input clock fr equency, the number of output clock signals generated by the pll, and the frequency of each output clock. if a pll is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (pac14 * f clkout product) to the total pll contribution.
proasic3e flash family fpgas revision 13 2-11 guidelines toggle rate definition a toggle rate defines the frequency of a net or logic elem ent relative to a clock. it is a percentage. if the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. below are some examples: ? the average toggle rate of a shift register is 100% as all flip-flop outputs to ggle at half of the clock frequency. ? the average toggle rate of an 8-bit counter is 25%: ? bit 0 (lsb) = 100% ? bit 1 = 50% ? bit 2 = 25% ?? ? bit 7 (msb) = 0.78125% ? average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8 enable rate definition output enable rate is the average percentage of ti me during which tristate outputs are enabled. when nontristate output buffers are used, the enable rate should be 100%. table 2-11 ? toggle rate guidelines reco mmended for power calculation component definition guideline ? 1 toggle rate of versatile outputs 10% ? 2 i/o buffer toggle rate 10% table 2-12 ? enable rate guidelines recomme nded for power calculation component definition guideline ? 1 i/o output buffer enable rate 100% ? 2 ram enable rate for read operations 12.5% ? 3 ram enable rate for write operations 12.5%
proasic3e dc and switching characteristics 2-12 revision 13 user i/o characteristics timing model figure 2-2 ? timing model operating conditions: ?2 speed, commercial temperature range (t j = 70c), worst-case vcc = 1.425 v dq y y dq dq dq y combinational cell combinational cell combinational cell i/o module (registered) i/o module (non-registered) register cell register cell i/o module (registered) i/o module (non-registered) lvpecl lvpecl lvds, blvds, m-lvds gtl+ 3.3v y combinational cell y combinational cell y combinational cell i/o module (non-registered) lvttl/lvcmos output drive strength = 24 ma high slew rate i/o module (non-registered) lvcmos 1.5v output drive strength = 12 ma high slew lvttl/lvcmos output drive strength = 12 ma high slew rate i/o module (non-registered) input lvttl/lvcmos clock input lvttl/lvcmos clock input lvttl/lvcmos clock t pd = 0.56 ns t pd = 0.49 ns t dp = 1.36 ns t pd = 0.87 ns t dp = 2.74 ns t pd = 0.51 ns t pd = 0.47 ns t dp = 2.39 ns t dp = 3.30 ns t clkq = 0.59 ns t dp = 1.53 ns t sud = 0.31 ns t py = 0.90 ns t clkq = 0.55 ns t sud = 0.43 ns t py = 0.90 ns t pd = 0.47 ns t clkq = 0.55 ns t sud = 0.43 ns t py = 1.36 ns t py = 0.90 ns t iclkq = 0.24 ns t isud = 0.26 ns t py = 1.22 ns
proasic3e flash family fpgas revision 13 2-13 figure 2-3 ? input buffer timing model and delays (example) (r) pad y gnd (f) 50% 50% (r) (f) (r) din gnd (f) 50% 50% pad y d clk q i/o interface din to array t din t din vcc t pys t py t pys t py vcc vtrip vtrip vih vil t py = max(t py (r), t py (f)) t din = max(t din (r), t din (f)) t py t din
proasic3e dc and switching characteristics 2-14 revision 13 figure 2-4 ? output buffer model and delays (example) t dp (r) pad v ol t dp (f) vtrip vtrip voh vcc d 50% 50% vcc 0 v dout 50% 50% 0 v t dout (r) t dout (f) from array pad t dp std load d clk q i/o interface dout d t dout t dp = max(t dp (r), t dp (f)) t dout = max(t dout (r), t dout (f))
proasic3e flash family fpgas revision 13 2-15 figure 2-5 ? tristate output buffer timing model and delays (example) d clk q d clk q 10% v cci t zl vtrip 50% t hz 90% vcci t zh vtrip 50% 50% t lz 50% eout pad d e 50% t eout (r) 50% t eout (f) pad dout eout d i/o interface e t eout t zls vtrip 50% t zhs vtrip 50% eout pad d e 50% 50% t eout (r) t eout (f) 50% vcc vcc vcc vcci vcc vcc vcc voh vol vol t zl , t zh , t hz , t lz , t zls , t zhs t eout = max(t eout (r), t eout (f))
proasic3e dc and switching characteristics 2-16 revision 13 overview of i/o performance summary of i/o dc input and output levels ? default i/o software settings table 2-13 ? summary of maximum and minimu m dc input and output levels applicable to commercial and industrial conditions i/o standard drive strength equivalent software default drive strength option 1 slew rate vil vih vol voh iol 3 ioh 3 min. v max. v min. v max. v max. v min. vmama 3.3v lvttl/ 3.3 v lvcmos 12 ma 12 ma high ?0.3 0.8 2 3.6 0.4 2.4 12 12 3.3 v lvcmos wide range 100 a 12 ma high ?0.3 0.8 2 3.6 0.2 vcci ? 0.2 0.1 0.1 2.5 v lvcmos 12 ma 12 ma high ?0.3 0.7 1.7 3.6 0.7 1.7 12 12 1.8 v lvcmos 12 ma 12 ma high ?0.3 0.35 * vcci 0. 65 * vcci 3.6 0.45 vcci ? 0.45 12 12 1.5 v lvcmos 12 ma 12 ma high ?0.3 0.30 * vcci 0.7 * vcci 3.6 0.25 * vcci 0.75 * vcci 12 12 3.3 v pci per pci specification 3.3 v pci-x per pci-x specification 3.3 v gtl 20 ma 2 20 ma 2 high ?0.3 vref ? 0.05 vref + 0.05 3.6 0.4 ? 20 20 2.5 v gtl 20 ma 2 20 ma 2 high ?0.3 vref ? 0.05 vref + 0.05 3.6 0.4 ? 20 20 3.3 v gtl+ 35 ma 35 ma high ?0.3 v ref ? 0.1 vref + 0.1 3.6 0.6 ? 35 35 2.5 v gtl+ 33 ma 33 ma high ?0.3 v ref ? 0.1 vref + 0.1 3.6 0.6 ? 33 33 hstl (i) 8 ma 8 ma high ?0.3 vref ? 0.1 vref + 0.1 3.6 0.4 vcci ? 0.4 8 8 hstl (ii) 15 ma 2 15 ma 2 high ?0.3 vref ? 0.1 vref + 0.1 3.6 0.4 vcci ? 0.4 15 15 sstl2 (i) 15 ma 15 ma high ?0.3 vref ? 0. 2 vref + 0.2 3.6 0.54 vcci ? 0.62 15 15 sstl2 (ii) 18 ma 18 ma high ?0.3 vref ? 0.2 vref + 0.2 3.6 0.35 vcci ? 0.43 18 18 sstl3 (i) 14 ma 14 ma high ?0.3 vref ? 0.2 vref + 0.2 3.6 0.7 vcci ? 1.1 14 14 sstl3 (ii) 21 ma 21 ma high ?0.3 vref ? 0.2 vref + 0.2 3.6 0.5 vcci ? 0.9 21 21 notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strength displayed in the software is supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. output drive strength is below jedec specification. 3. currents are measured at 85c junction temperature. 4. output slew rates can be extracted from i bis models , located at http://www.microsem i.com/soc/dow nload/ibis/de fault.aspx .
proasic3e flash family fpgas revision 13 2-17 table 2-14 ? summary of maximum and minimum dc input levels applicable to commercial and industrial conditions dc i/o standards commercial 1 industrial 2 iil 3 iih 4 iil 3 iih 4 a a a a 3.3 v lvttl / 3.3 v lvcmos 10 10 15 15 3.3 v lvcmos wide range 10 10 15 15 2.5 v lvcmos 10 10 15 15 1.8 v lvcmos 10 10 15 15 1.5 v lvcmos 10 10 15 15 3.3 v pci 10101515 3.3 v pci-x 10101515 3.3 v gtl 10101515 2.5 v gtl 10101515 3.3 v gtl+ 10 10 15 15 2.5 v gtl+ 10 10 15 15 hstl (i) 10101515 hstl (ii) 10 10 15 15 sstl2 (i) 10101515 sstl2 (ii) 10 10 15 15 sstl3 (i) 10101515 sstl3 (ii) 10 10 15 15 notes: 1. commercial range (0c < t a < 70c) 2. industrial range (?40c < t a < 85c) 3. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 4. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges.
proasic3e dc and switching characteristics 2-18 revision 13 summary of i/o timing characte ristics ? default i/o software settings table 2-15 ? summary of ac measuring points standard input reference voltage (vref_typ) board termination voltage (vtt_ref) measuring trip point (vtrip) 3.3 v lvttl / 3.3 v lvcmos ? ? 1.4 v 3.3 v lvcmos wide range ? ? 1.4 v 2.5 v lvcmos ? ? 1.2 v 1.8 v lvcmos ? ? 0.90 v 1.5 v lvcmos ? ? 0.75 v 3.3 v pci ? ? 0.285 * vcci (rr) 0.615 * vcci (ff)) 3.3 v pci-x ? ? 0.285 * vcci (rr) 0.615 * vcci (ff) 3.3 v gtl 0.8 v 1.2 v vref 2.5 v gtl 0.8 v 1.2 v vref 3.3 v gtl+ 1.0 v 1.5 v vref 2.5 v gtl+ 1.0 v 1.5 v vref hstl (i) 0.75 v 0.75 v vref hstl (ii) 0.75 v 0.75 v vref sstl2 (i) 1.25 v 1.25 v vref sstl2 (ii) 1.25 v 1.25 v vref sstl3 (i) 1.5 v 1.485 v vref sstl3 (ii) 1.5 v 1.485 v vref lvds ? ? cross point lvpecl ? ? cross point table 2-16 ? i/o ac parameter definitions parameter definition t dp data to pad delay through the output buffer t py pad to data delay through the input buffer with schmitt trigger disabled t dout data to output buffer delay through the i/o interface t eout enable to output buffer tristate co ntrol delay through the i/o interface t din input buffer to data delay through the i/o interface t pys pad to data delay through the input buffer with schmitt trigger enabled t hz enable to pad delay through the output buffer?high to z t zh enable to pad delay through the output buffer?z to high t lz enable to pad delay through the output buffer?low to z t zl enable to pad delay through the output buffer?z to low t zhs enable to pad delay through the output buffer with delayed enable?z to high t zls enable to pad delay through the output buffer with delayed enable?z to low
proasic3e flash family fpgas revision 13 2-19 table 2-17 ? summary of i/o timing character istics?software default settings ?2 speed grade, commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v i/o standard drive strength (ma) equivalent software default drive strength option) 1 slew rate capacitive load (pf) external resistor ( ? ) t dout (ns) t dp (ns) t din (ns) t py (ns) t pys (ns) t eout (ns) t zl (ns) t zh (ns) t lz (ns) t hz (ns) t zls (ns) t zhs (ns) 3.3 v lvttl / 3.3 v lvcmos 12 12 high 35 ? 0.49 2.74 0.03 0.90 1. 17 0.32 2.79 2.14 2.45 2.70 4.46 3.81 3.3 v lvcmos wide range 2 100 a 12 high 35 ? 0.49 4.24 0.03 1.36 1.78 0.32 4.24 3.25 3.78 4.17 6.77 5.79 2.5 v lvcmos 12 12 high 35 ? 0.49 2.80 0.03 1.13 1.24 0.32 2.85 2. 61 2.51 2.61 4.52 4.28 1.8 v lvcmos 12 12 high 35 ? 0.49 2.83 0.03 1.08 1.42 0.32 2.89 2. 31 2.79 3.16 4.56 3.98 1.5 v lvcmos 12 12 high 35 ? 0.49 3.30 0.03 1.27 1.60 0.32 3.36 2. 70 2.96 3.27 5.03 4.37 3.3 v pci per pci spec ? high 10 25 3 0.49 2.09 0.03 0.78 1.17 0.32 2.13 1.49 2.45 2.70 3.80 3.16 3.3 v pci-x per pci-x spec ? high 10 25 3 0.49 2.09 0.03 0.78 1.17 0.32 2.13 1.49 2.45 2.70 3.80 3.16 3.3 v gtl 20 4 ? high 10 25 0.45 1.55 0.03 2. 19 ? 0.32 1.52 1.55 ? ? 3.19 3.22 2.5 v gtl 20 4 ? high 10 25 0.45 1.59 0.03 1. 83 ? 0.32 1.61 1.59 ? ? 3.28 3.26 3.3 v gtl+ 35 ? high 10 25 0.45 1.53 0.03 1.19 ? 0.32 1.56 1.53 ? ? 3.23 3.20 2.5 v gtl+ 33 ? high 10 25 0.45 1.65 0.03 1.13 ? 0.32 1.68 1.57 ? ? 3.35 3.24 hstl (i) 8 ? high 20 50 0.49 2.37 0. 03 1.59 ? 0.32 2.42 2.35 ? ? 4.09 4.02 hstl (ii) 15 4 ? high 20 25 0.49 2.26 0.03 1. 59 ? 0.32 2.30 2.03 ? ? 3.97 3.70 sstl2 (i) 15 ? high 30 50 0.49 1.59 0. 03 1.00 ? 0.32 1.62 1.38 ? ? 3.29 3.05 sstl2 (ii) 18 ? high 30 25 0.49 1.62 0. 03 1.00 ? 0.32 1.65 1.32 ? ? 3.32 2.99 sstl3 (i) 14 ? high 30 50 0.49 1.72 0. 03 0.93 ? 0.32 1.75 1.37 ? ? 3.42 3.04 sstl3 (ii) 21 ? high 30 25 0.49 1.54 0. 03 0.93 ? 0.32 1.57 1.25 ? ? 3.24 2.92 lvds/b-lvds/ m-lvds 24 ? high ? ? 0.49 1.40 0.03 1.36 ? ? ? ? ? ? ? ? lvpecl 24 ? high ? ? 0.49 1.36 0.03 1.22 ? ? ? ? ? ? ? ? notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strength displayed in the software is supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. all lvcmos 3.3 v software macros s upport lvcmos 3.3v wide range as sp ecified in the jesd8b specification. 3. resistance is used to measure i/o propagation delays as defined in pci specifications. see figure 2-11 on page 2-37 for connectivity. this resistor is not required during normal operation. 4. output drive strength is below jedec specification. 5. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 ..
proasic3e dc and switching characteristics 2-20 revision 13 detailed i/o dc characteristics table 2-18 ? input capacitance symbol definition cond itions min. max. units c in input capacitance vin = 0, f = 1.0 mhz 8 pf c inclk input capacitance on the clock pin vin = 0, f = 1.0 mhz 8 pf table 2-19 ? i/o output buffer maximum resistances 1 standard drive strength r pull-down ( ? ) 2 r pull-up ( ? ) 3 3.3 v lvttl / 3.3 v lvcmos 4 ma 100 300 8 ma 50 150 12 ma 25 75 16 ma 17 50 24 ma 11 33 3.3 v lvcmos wide range 100 a same as regular 3.3 v lvcmos same as regular 3.3 v lvcmos 2.5 v lvcmos 4 ma 100 200 8 ma 50 100 12 ma 25 50 16 ma 20 40 24 ma 11 22 1.8 v lvcmos 2 ma 200 225 4 ma 100 112 6 ma 50 56 8 ma 50 56 12 ma 20 22 16 ma 20 22 1.5 v lvcmos 2 ma 200 224 4 ma 100 112 6 ma 67 75 8 ma 33 37 12 ma 33 37 3.3 v pci/pci-x per pci/pci-x specification 25 75 3.3 v gtl 20 ma 4 11 ? 2.5 v gtl 20 ma 4 14 ? notes: 1. these maximum values are provided for informational reasons only. minimum output buffer resistance values depend on vcci, drive strength selection, temperature, and process. for board design considerations and detailed output buffer resistances, use the corresponding ibis models located on the microsemi soc products group website at www.microsemi.com/soc/techdocs/models/ibis.html . 2. r (pull-down-max) = (volspec) / iolspec 3. r (pull-up-max) = (vccimax ? vohspec) / iohspec 4. output drive strength is below jedec specification.
proasic3e flash family fpgas revision 13 2-21 3.3 v gtl+ 35 ma 12 ? 2.5 v gtl+ 33 ma 15 ? hstl (i) 8 ma 50 50 hstl (ii) 15 ma 4 25 25 sstl2 (i) 15 ma 27 31 sstl2 (ii) 18 ma 13 15 sstl3 (i) 14 ma 44 69 sstl3 (ii) 21 ma 18 32 table 2-20 ? i/o weak pull-up/pull-down resistances minimum and maximum weak pull-u p/pull-down resistance values vcci r( (weak pull-up) 1 ( ? ) r (weak pull-down) 2 ( ? ) min. max. min. max. 3.3 v 10 k 45 k 10 k 45 k 3.3 v (wide range i/os) 10 k 45 k 10 k 45 k 2.5 v 11 k 55 k 12 k 74 k 1.8 v 18 k 70 k 17 k 110 k 1.5 v 19 k 90 k 19 k 140 k notes: 1. r (weak pull-up-max) = (vccimax ? vohspec) / i (weak pull-up-min) 2. r (weak pull-down-max) = (volspec) / i (weak pull-down-min) table 2-19 ? i/o output buffer maximum resistances 1 (continued) standard drive strength r pull-down ( ? ) 2 r pull-up ( ? ) 3 notes: 1. these maximum values are provided for informational reasons only. minimum output buffer resistance values depend on vcci, drive strength selection, temperature, and process. for board design considerations and detailed output buffer resistances, use the corresponding ibis models located on the microsemi soc products group website at www.microsemi.com/soc/techdocs/models/ibis.html . 2. r (pull-down-max) = (volspec) / iolspec 3. r (pull-up-max) = (vccimax ? vohspec) / iohspec 4. output drive strength is below jedec specification.
proasic3e dc and switching characteristics 2-22 revision 13 the length of time an i/o can withstand iosh/iosl events depends on the junc tion temperature. the reliability data below is based on a 3.3 v, 36 ma i/o setting, which is the worst case for this type of analysis. for example, at 100c, the short current condition would have to be sustained for more than six months to cause a reliability concern. the i/o design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions. table 2-21 ? i/o short currents iosh/iosl drive strength iosh (ma)* iosl (ma)* 3.3 v lvttl / 3.3 v lvcmos 4 ma 25 27 8 ma 51 54 12 ma 103 109 16 ma 132 127 24 ma 268 181 3.3 v lvcmos wide range 100 a same as regular 3.3 v lvcmos same as regular 3.3 v lvcmos 2.5 v lvcmos 4 ma 16 18 8 ma 32 37 12 ma 65 74 16 ma 83 87 24 ma 169 124 1.8 v lvcmos 2 ma 9 11 4 ma 17 22 6 ma 35 44 8 ma 45 51 12 ma 91 74 16 ma 91 74 1.5 v lvcmos 2 ma 13 16 4 ma 25 33 6 ma 32 39 8 ma 66 55 12 ma 66 55 notes: 1. t j = 100c 2. applicable to 3.3 v lvcmos wide range. iosl /iosh dependent on the i/o buffer drive strength selected for wide range applications. all lvcmos 3.3 v software macros support lvcmos 3.3 v wide range as specified in the jesd8b specification. table 2-22 ? duration of short circuit event before failure temperature time before failure ?40c > 20 years 0c > 20 years 25c > 20 years 70c 5 years 85c 2 years 100c 6 months
proasic3e flash family fpgas revision 13 2-23 table 2-23 ? schmitt trigger input hysteresis hysteresis voltage value (typ.) for schmitt mode input buffers input buffer configuration hysteresis value (typ.) 3.3 v lvttl/lvcmos/pci/pci-x (schmitt trigger mode) 240 mv 2.5 v lvcmos (schmitt trigger mode) 140 mv 1.8 v lvcmos (schmitt trigger mode) 80 mv 1.5 v lvcmos (schmitt trigger mode) 60 mv table 2-24 ? i/o input rise time, fall time, and related i/o reliability* input buffer input rise/fall time (min.) input rise/fall time (max.) reliability lvttl/lvcmos (schmitt trigger disabled) no requirement 10 ns * 20 years (110c) lvttl/lvcmos (schmitt trigger enabled) no requirement no require ment, but input noise voltage cannot exceed schmitt hysteresis. 20 years (110c) hstl/sstl/gtl no requirement 10 ns * 10 years (100c) lvds/b-lvds/m-lvds/ lvpecl no requirement 10 ns * 10 years (100c) note: *for clock signals and similar edge-generating si gnals, refer to the "proasic3/e sso and pin placement guidelines" chapter of the proasic3e fpga fabric user?s guide . the maximum input rise/fall time is related to the noise induced into the input buffer trace. if the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. the longer the rise/fall times, the more susceptible the input signal is to the board noise. microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.
proasic3e dc and switching characteristics 2-24 revision 13 single-ended i/o characteristics 3.3 v lvttl / 3.3 v lvcmos low-voltage transistor?transistor logic is a general-purpose standard (eia/jesd) for 3.3 v applications. it uses an lvttl input buffer and pu sh-pull output buffer. the 3.3 v lvcmos standard is supported as part of the 3.3 v lvttl support. table 2-25 ? minimum and maximum dc input and output levels 3.3 v lvttl / 3.3 v lvcmos vil vih vol voh iol ioh iosl iosh iil 1 iih 2 drive strength min. v max. v min., v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 4 ma ?0.3 0.8 2 3.6 0.4 2.4 4 4 27 25 10 10 8 ma ?0.3 0.8 2 3.6 0.4 2.4 8 8 54 51 10 10 12 ma ?0.3 0.8 2 3.6 0.4 2.4 12 12 109 103 10 10 16 ma ?0.3 0.8 2 3.6 0.4 2.4 16 16 127 132 10 10 24 ma ?0.3 0.8 2 3.6 0.4 2.4 24 24 181 268 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v< vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin< vcci. input current is larger when operating outside recommended ranges. 3. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray. figure 2-6 ? ac loading table 2-26 ? 3.3 v lvttl / 3.3 v lvcmos ac waveforms , measuring points, and capacitive loads input low (v) input high (v) measur ing point* (v) vref (typ.) (v) c load (pf) 0 3.3 1.4 ? 35 note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points. test point test point enable path datapath 35 pf r = 1 k r to vcci for t lz / t zl / t zls r to gnd for t hz / t zh / t zhs 35 pf for t zh / t zhs / t zl / t zls 35 pf for t hz / t lz
proasic3e flash family fpgas revision 13 2-25 timing characteristics table 2-27 ? 3.3 v lvttl / 3.3 v lvcmos high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 0.66 7.88 0.04 1.20 1.57 0. 43 8.03 6.70 2.69 2.59 10.26 8.94 ns ?1 0.56 6.71 0.04 1.02 1.33 0.36 6.83 5.70 2.29 2.20 8.73 7.60 ns ?2 0.49 5.89 0.03 0.90 1.17 0.32 6.00 5.01 2.01 1.93 7.67 6.67 ns 8 ma std. 0.66 5.08 0.04 1.20 1.57 0. 43 5.17 4.14 3.05 3.21 7.41 6.38 ns ?1 0.56 4.32 0.04 1.02 1.33 0.36 4.40 3.52 2.59 2.73 6.30 5.43 ns ?2 0.49 3.79 0.03 0.90 1.17 0.32 3.86 3.09 2.28 2.40 5.53 4.76 ns 12 ma std. 0.66 3.67 0.04 1.20 1.57 0.43 3.74 2.87 3.28 3.61 5.97 5.11 ns ?1 0.56 3.12 0.04 1.02 1.33 0.36 3.18 2.44 2.79 3.07 5.08 4.34 ns ?2 0.49 2.74 0.03 0.90 1.17 0.32 2.79 2.14 2.45 2.70 4.46 3.81 ns 16 ma std. 0.66 3.46 0.04 1.20 1.57 0. 43 3.53 2.61 3.33 3.72 5.76 4.84 ns ?1 0.56 2.95 0.04 1.02 1.33 0.36 3.00 2.22 2.83 3.17 4.90 4.12 ns ?2 0.49 2.59 0.03 0.90 1.17 0.32 2.63 1.95 2.49 2.78 4.30 3.62 ns 24 ma std. 0.66 3.21 0.04 1.20 1.57 0. 43 3.27 2.16 3.39 4.13 5.50 4.39 ns ?1 0.56 2.73 0.04 1.02 1.33 0.36 2.78 1.83 2.88 3.51 4.68 3.74 ns ?2 0.49 2.39 0.03 0.90 1.17 0.32 2.44 1.61 2.53 3.08 4.11 3.28 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. table 2-28 ? 3.3 v lvttl / 3.3 v lvcmos low slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 0.66 11.01 0.04 1.20 1.57 0.4 3 11.21 9.05 2.69 2.44 13.45 11.29 ns ?1 0.56 9.36 0.04 1.02 1.33 0.36 9. 54 7.70 2.29 2.08 11.44 9.60 ns ?2 0.49 8.22 0.03 0.90 1.17 0.32 8.37 6.76 2.01 1. 82 10.04 8.43 ns 8 ma std. 0.66 7.86 0.04 1.20 1.57 0. 43 8.01 6.44 3.04 3.06 10.24 8.68 ns ?1 0.56 6.69 0.04 1.02 1.33 0.36 6.81 5.48 2.58 2.61 8.71 7.38 ns ?2 0.49 5.87 0.03 0.90 1.17 0.32 5.98 4.81 2.27 2.29 7.65 6.48 ns 12 ma std. 0.66 6.03 0.04 1.20 1.57 0. 43 6.14 5.02 3.28 3.47 8.37 7.26 ns ?1 0.56 5.13 0.04 1.02 1.33 0.36 5.22 4.27 2.79 2.95 7.12 6.17 ns ?2 0.49 4.50 0.03 0.90 1.17 0.32 4.58 3.75 2.45 2.59 6.25 5.42 ns 16 ma std. 0.66 5.62 0.04 1.20 1.57 0. 43 5.72 4.72 3.32 3.58 7.96 6.96 ns ?1 0.56 4.78 0.04 1.02 1.33 0.36 4.87 4.02 2.83 3.04 6.77 5.92 ns ?2 0.49 4.20 0.03 0.90 1.17 0.32 4.27 3.53 2.48 2.67 5.94 5.20 ns 24 ma std. 0.66 5.24 0.04 1.20 1.57 0. 43 5.34 4.69 3.39 3.96 7.58 6.93 ns ?1 0.56 4.46 0.04 1.02 1.33 0.36 4.54 3.99 2.88 3.37 6.44 5.89 ns ?2 0.49 3.92 0.03 0.90 1.17 0.32 3.99 3.50 2.53 2.96 5.66 5.17 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e dc and switching characteristics 2-26 revision 13 3.3 v lvcmos wide range table 2-29 ? minimum and maximum dc input and output levels 3.3 v lvcmos wide range equivalent software default drive strength option 1 vil vih vol voh iol ioh iosl iosh iil 2 iih 3 drive strength min. v max. v min. v max. v max. v min. vaa max. ma 4 max. ma 4 a 5 a 5 100 a 2 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 27 25 10 10 100 a 4 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 27 25 10 10 100 a 6 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 54 51 10 10 100 a 8 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 54 51 10 10 100 a 12 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 109 103 10 10 100 a 16 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 127 132 10 10 100 a 24 ma ?0.3 0.8 2 3.6 0.2 vdd ? 0.2 100 100 181 268 10 10 notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strength displayed in the software is supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 3. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin< vcci. input current is larger when operating outside recommended ranges. 4. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 5. currents are measured at 85c junction temperature. 6. software default selection highlighted in gray. figure 2-7 ? ac loading table 2-30 ? 3.3 v lvcmos wide range ac waveforms, me asuring points, and capacitive loads input low (v) input high (v) measur ing point* (v) vref (typ.) (v) c load (pf) 0 3.3 1.4 ? 35 note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points. test point test point enable path datapath 35 pf r = 1 k r to vcci for t lz / t zl / t zls r to gnd for t hz / t zh / t zhs 35 pf for t zh / t zhs / t zl / t zls 35 pf for t hz / t lz
proasic3e flash family fpgas revision 13 2-27 timing characteristics table 2-31 ? 3.3 v lvcmos wide range high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.7 v drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 100 a 4 ma std. 0.66 12.19 0.04 1.83 2.38 0.43 12.19 10.17 4.16 4.00 15.58 13.57 ns ?1 0.56 10.37 0.04 1.55 2.02 0.36 10. 37 8.66 3.54 3.41 13.26 11.54 ns ?2 0.49 9.10 0.03 1.36 1.78 0.32 9. 10 7.60 3.11 2.99 11.64 10.13 ns 100 a 8 ma std. 0.66 7.85 0.04 1.83 2.38 0.43 7.85 6.29 4.71 4.97 11.24 9.68 ns ?1 0.56 6.68 0.04 1.55 2.02 0.36 6.68 5.35 4.01 4.22 9.57 8.24 ns ?2 0.49 5.86 0.03 1.36 1.78 0.32 5.86 4.70 3.52 3.71 8.40 7.23 ns 100 a 12 ma std. 0.66 5.67 0.04 1.83 2.38 0.43 5.67 4.36 5.06 5.59 9.07 7.75 ns ?1 0.56 4.82 0.04 1.55 2.02 0.36 4.82 3.71 4.31 4.75 7.71 6.59 ns ?2 0.49 4.24 0.03 1.36 1.78 0.32 4.24 3.25 3.78 4.17 6.77 5.79 ns 100 a 16 ma std. 0.66 5.35 0.04 1.83 2. 38 0.43 5.35 3.96 5.15 5.76 8.75 7.35 ns ?1 0.56 4.55 0.04 1.55 2.02 0.36 4.55 3.36 4.38 4.90 7.44 6.25 ns ?2 0.49 4.00 0.03 1.36 1.78 0.32 4.00 2.95 3.85 4.30 6.53 5.49 ns 100 a 24 ma std. 0.66 4.96 0.04 1.83 2. 38 0.43 4.96 3.27 5.23 6.38 8.35 6.67 ns ?1 0.56 4.22 0.04 1.55 2.02 0.36 4.22 2.78 4.45 5.43 7.11 5.67 ns ?2 0.49 3.70 0.03 1.36 1.78 0.32 3.70 2.44 3.91 4.76 6.24 4.98 ns notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strength displayed in the software is supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. software default selection highlighted in gray. 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e dc and switching characteristics 2-28 revision 13 table 2-32 ? 3.3 v lvcmos wide range low slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.7 v drive strength equivalent software default drive strength option 1 speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 100 a 4 ma std. 0.66 17.02 0.04 1.83 2.3 8 0.43 17.02 13.74 4.16 3.78 20.42 17.14 ns ?1 0.56 14.48 0.04 1.55 2.02 0.36 14.48 11.69 3.54 3.21 17.37 14.58 ns ?2 0.49 12.71 0.03 1.36 1.78 0.32 12.71 10.26 3.11 2.82 15.25 12.80 ns 100 a 8 ma std. 0.66 12.16 0.04 1.83 2.38 0.43 12.16 9.78 4.70 4.74 15.55 13.17 ns ?1 0.56 10.34 0.04 1.55 2.02 0.36 10.34 8.32 4.00 4.03 13.23 11.20 ns ?2 0.49 9.08 0.03 1.36 1.78 0.32 9.08 7.30 3.51 3.54 11.61 9.84 ns 100a 12 ma std. 0.66 9.32 0.04 1.83 2.38 0.43 9.32 7.62 5.06 5.36 12.71 11.02 ns ?1 0.56 7.93 0.04 1.55 2.02 0.36 7.93 6.48 4.31 4.56 10.81 9.37 ns ?2 0.49 6.96 0.03 1.36 1.78 0.32 6.96 5.69 3.78 4.00 9.49 8.23 ns 100 a 16 ma std. 0.66 8.69 0.04 1.83 2. 38 0.43 8.69 7.17 5.14 5.53 12.08 10.57 ns ?1 0.56 7.39 0.04 1.55 2.02 0.36 7.39 6.10 4.37 4.71 10.28 8.99 ns ?2 0.49 6.49 0.03 1.36 1.78 0.32 6.49 5.36 3.83 4.13 9.02 7.89 ns 100 a 24 ma std. 0.66 8.11 0.04 1.83 2. 38 0.43 8.11 7.13 5.23 6.13 11.50 10.52 ns ?1 0.56 6.90 0.04 1.55 2.02 0.36 6.90 6.06 4.45 5.21 9.78 8.95 ns ?2 0.49 6.05 0.03 1.36 1.78 0.32 6.05 5.32 3.91 4.57 8.59 7.86 ns notes: 1. the minimum drive strength for any lvcmos 3.3 v software configuration when run in wide range is 100 a. drive strength displayed in the software is supported for normal range only. for a detailed i/v curve, refer to the ibis models. 2. software default selection highlighted in gray. 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e flash family fpgas revision 13 2-29 2.5 v lvcmos low-voltage cmos for 2.5 v is an extension of the lvcmos standard (jesd8-5) used for general- purpose 2.5 v applications. table 2-33 ? minimum and maximum dc input and output levels 2.5 v lvcmos vil vih vol voh iol ioh iosl iosh iil 1 iih 2 drive strength min. v max. v min. v max. v max., v min. vmama max. ma 3 max. ma 3 a 4 a 4 4 ma ?0.3 0.7 1.7 3.6 0.7 1.7 4 4 18 16 10 10 8 ma ?0.3 0.7 1.7 3.6 0.7 1.7 8 8 37 32 10 10 12 ma ?0.3 0.7 1.7 3.6 0.7 1.7 12 12 74 65 10 10 16 ma ?0.3 0.7 1.7 3.6 0.7 1.7 16 16 87 83 10 10 24 ma ?0.3 0.7 1.7 3.6 0.7 1.7 24 24 124 169 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges. 3. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray. figure 2-8 ? ac loading table 2-34 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measur ing point* (v) vref (typ.) (v) c load (pf) 0 2.5 1.2 ? 35 note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points. test point test point enable path datapath 35 pf r = 1 k r to vcci for t lz / t zl / t zls r to gnd for t hz / t zh / t zhs 35 pf for t zh / t zhs / t zl / t zls 35 pf for t hz / t lz
proasic3e dc and switching characteristics 2-30 revision 13 timing characteristics table 2-35 ? 2.5 v lvcmos high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.3 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 0.66 8.82 0.04 1.51 1.66 0. 43 8.13 8.82 2.72 2.29 10.37 11.05 ns ?1 0.56 7.50 0.04 1.29 1.41 0.36 6.92 7.50 2.31 1.95 8.82 9.40 ns ?2 0.49 6.58 0.03 1.13 1.24 0.32 6.07 6.58 2.03 1.71 7.74 8.25 ns 8 ma std. 0.66 5.27 0.04 1.51 1.66 0. 43 5.27 5.27 3.10 3.03 7.50 7.51 ns ?1 0.56 4.48 0.04 1.29 1.41 0.36 4.48 4.48 2.64 2.58 6.38 6.38 ns ?2 0.49 3.94 0.03 1.13 1.24 0.32 3.93 3.94 2.32 2.26 5.60 5.61 ns 12 ma std. 0.66 3.74 0.04 1.51 1.66 0.43 3.81 3.49 3.37 3.49 6.05 5.73 ns ?1 0.56 3.18 0.04 1.29 1.41 0.36 3.24 2.97 2.86 2.97 5.15 4.87 ns ?2 0.49 2.80 0.03 1.13 1.24 0.32 2.85 2.61 2.51 2.61 4.52 4.28 ns 16 ma std. 0.66 3.53 0.04 1.51 1.66 0. 43 3.59 3.12 3.42 3.62 5.83 5.35 ns ?1 0.56 3.00 0.04 1.29 1.41 0.36 3.06 2.65 2.91 3.08 4.96 4.55 ns ?2 0.49 2.63 0.03 1.13 1.24 0.32 2.68 2.33 2.56 2.71 4.35 4.00 ns 24 ma std. 0.66 3.26 0.04 1.51 1.66 0. 43 3.32 2.48 3.49 4.11 5.56 4.72 ns ?1 0.56 2.77 0.04 1.29 1.41 0.36 2.83 2.11 2.97 3.49 4.73 4.01 ns ?2 0.49 2.44 0.03 1.13 1.24 0.32 2.48 1.85 2.61 3.07 4.15 3.52 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e flash family fpgas revision 13 2-31 table 2-36 ? 2.5 v lvcmos low slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.3 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 4 ma std. 0.66 12.00 0.04 1.51 1.66 0.4 3 12.23 11.61 2.72 2.20 14.46 13.85 ns ?1 0.56 10.21 0.04 1.29 1.41 0.36 10.40 9.88 2.31 1.87 12.30 11.78 ns ?2 0.49 8.96 0.03 1.13 1.24 0.32 9. 13 8.67 2.03 1.64 10.80 10.34 ns 8 ma std. 0.66 8.73 0.04 1.51 1.66 0. 43 8.89 8.01 3.10 2. 93 11.13 10.25 ns ?1 0.56 7.43 0.04 1.29 1.41 0.36 7.57 6.82 2.64 2.49 9.47 8.72 ns ?2 0.49 6.52 0.03 1.13 1.24 0.32 6.64 5.98 2.32 2.19 8.31 7.65 ns 12 ma std. 0.66 6.77 0.04 1.51 1.66 0. 43 6.90 6.11 3.37 3.39 9.14 8.34 ns ?1 0.56 5.76 0.04 1.29 1.41 0.36 5.87 5.20 2.86 2.89 7.77 7.10 ns ?2 0.49 5.06 0.03 1.13 1.24 0.32 5.15 4.56 2.51 2.53 6.82 6.23 ns 16 ma std. 0.66 6.31 0.04 1.51 1.66 0. 43 6.42 5.73 3.42 3.52 8.66 7.96 ns ?1 0.56 5.37 0.04 1.29 1.41 0.36 5.46 4.87 2.91 3.00 7.37 6.77 ns ?2 0.49 4.71 0.03 1.13 1.24 0.32 4.80 4.28 2.56 2.63 6.47 5.95 ns 24 ma std. 0.66 5.93 0.04 1.51 1.66 0. 43 6.04 5.70 3.49 4.00 8.28 7.94 ns ?1 0.56 5.05 0.04 1.29 1.41 0.36 5.14 4.85 2.97 3.40 7.04 6.75 ns ?2 0.49 4.43 0.03 1.13 1.24 0.32 4.51 4.26 2.61 2.99 6.18 5.93 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e dc and switching characteristics 2-32 revision 13 1.8 v lvcmos low-voltage cmos for 1.8 v is an extension of the lvcmos standard (jesd8-5) used for general- purpose 1.8 v applications. it uses a 1.8 v input buffer and a push-pull output buffer. table 2-37 ? minimum and maximum dc input and output levels 1.8 v lvcmos vil vih vol voh iol ioh iosl iosh iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.35 * vcci 0.65 * v cci 3.6 0.45 vcci ? 0.45 2 2 11 9 10 10 4 ma ?0.3 0.35 * vcci 0.65 * v cci 3.6 0.45 vcci ? 0.45 4 4 22 17 10 10 6 ma ?0.3 0.35 * vcci 0.65 * v cci 3.6 0.45 vcci ? 0.45 6 6 44 35 10 10 8 ma ?0.3 0.35 * vcci 0.65 * vcci 3.6 0.45 vcci ? 0.45 8 8 51 45 10 10 12 ma ?0.3 0.35 * vcci 0.65 * vcci 3.6 0.45 vcci ? 0.45 12 12 74 91 10 10 16 ma ?0.3 0.35 * vcci 0.65 * v cci 3.6 0.45 vcci ? 0.45 16 16 74 91 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v < vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges. 3. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray. figure 2-9 ? ac loading table 2-38 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measur ing point* (v) vref (typ.) (v) c load (pf) 0 1.8 0.9 ? 35 note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points. test point test point enable path datapath 35 pf r = 1 k r to vcci for t lz / t zl / t zls r to gnd for t hz / t zh / t zhs 35 pf for t zh / t zhs / t zl / t zls 35 pf for t hz / t lz
proasic3e flash family fpgas revision 13 2-33 timing characteristics table 2-39 ? 1.8 v lvcmos high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.7 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 0.66 12.10 0.04 1.45 1.91 0. 43 9.59 12.10 2.78 1.64 11.83 14.34 ns ?1 0.56 10.30 0.04 1.23 1.62 0.36 8. 16 10.30 2.37 1.39 10.06 12.20 ns ?2 0.49 9.04 0.03 1.08 1.42 0.32 7.16 9.04 2.08 1.22 8.83 10.71 ns 4 ma std. 0.66 7.05 0.04 1.45 1.91 0. 43 6.20 7.05 3.25 2.86 8.44 9.29 ns ?1 0.56 6.00 0.04 1.23 1.62 0.36 5.28 6.00 2.76 2.44 7.18 7.90 ns ?2 0.49 5.27 0.03 1.08 1.42 0.32 4.63 5.27 2.43 2.14 6.30 6.94 ns 6 ma std. 0.66 4.52 0.04 1.45 1.91 0. 43 4.47 4.52 3.57 3.47 6.70 6.76 ns ?1 0.56 3.85 0.04 1.23 1.62 0.36 3.80 3.85 3.04 2.95 5.70 5.75 ns ?2 0.49 3.38 0.03 1.08 1.42 0.32 3.33 3.38 2.66 2.59 5.00 5.05 ns 8 ma std. 0.66 4.12 0.04 1.45 1.91 0. 43 4.20 3.99 3.63 3.62 6.43 6.23 ns ?1 0.56 3.51 0.04 1.23 1.62 0.36 3.57 3.40 3.09 3.08 5.47 5.30 ns ?2 0.49 3.08 0.03 1.08 1.42 0.32 3.14 2.98 2.71 2.71 4.81 4.65 ns 12 ma std. 0.66 3.80 0.04 1.45 1.91 0.43 3.87 3.09 3.73 4.24 6.10 5.32 ns ?1 0.56 3.23 0.04 1.23 1.62 0.36 3.29 2.63 3.18 3.60 5.19 4.53 ns ?2 0.49 2.83 0.03 1.08 1.42 0.32 2.89 2.31 2.79 3.16 4.56 3.98 ns 16 ma std. 0.66 3.80 0.04 1.45 1.91 0. 43 3.87 3.09 3.73 4.24 6.10 5.32 ns ?1 0.56 3.23 0.04 1.23 1.62 0.36 3.29 2.63 3.18 3.60 5.19 4.53 ns ?2 0.49 2.83 0.03 1.08 1.42 0.32 2.89 2.31 2.79 3.16 4.56 3.98 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e dc and switching characteristics 2-34 revision 13 table 2-40 ? 1.8 v lvcmos low slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.7 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 0.66 15.84 0.04 1.45 1.91 0.4 3 15.65 15.84 2.78 1.58 17.89 18.07 ns ?1 0.56 13.47 0.04 1.23 1.62 0.36 13. 31 13.47 2.37 1.35 15.22 15.37 ns ?2 0.49 11.83 0.03 1.08 1.42 0.32 11. 69 11.83 2.08 1.18 13.36 13.50 ns 4 ma std. 0.66 11.39 0.04 1.45 1.91 0.43 11.60 10.76 3.26 2.77 13.84 12.99 ns ?1 0.56 9.69 0.04 1.23 1.62 0.36 9. 87 9.15 2.77 2.36 11.77 11.05 ns ?2 0.49 8.51 0.03 1.08 1.42 0.32 8.66 8.03 2.43 2. 07 10.33 9.70 ns 6 ma std. 0.66 8.97 0.04 1.45 1.91 0. 43 9.14 8.10 3.57 3. 36 11.37 10.33 ns ?1 0.56 7.63 0.04 1.23 1.62 0.36 7.77 6.89 3.04 2.86 9.67 8.79 ns ?2 0.49 6.70 0.03 1.08 1.42 0.32 6.82 6.05 2.66 2.51 8.49 7.72 ns 8 ma std. 0.66 8.35 0.04 1.45 1.91 0. 43 8.50 7.59 3.64 3.52 10.74 9.82 ns ?1 0.56 7.10 0.04 1.23 1.62 0.36 7.23 6.45 3.10 3.00 9.14 8.35 ns ?2 0.49 6.24 0.03 1.08 1.42 0.32 6.35 5.66 2.72 2.63 8.02 7.33 ns 12 ma std. 0.66 7.94 0.04 1.45 1.91 0. 43 8.09 7.56 3.74 4.11 10.32 9.80 ns ?1 0.56 6.75 0.04 1.23 1.62 0.36 6.88 6.43 3.18 3.49 8.78 8.33 ns ?2 0.49 5.93 0.03 1.08 1.42 0.32 6.04 5.65 2.79 3.07 7.71 7.32 ns 16 ma std. 0.66 7.94 0.04 1.45 1.91 0. 43 8.09 7.56 3.74 4.11 10.32 9.80 ns ?1 0.56 6.75 0.04 1.23 1.62 0.36 6.88 6.43 3.18 3.49 8.78 8.33 ns ?2 0.49 5.93 0.03 1.08 1.42 0.32 6.04 5.65 2.79 3.07 7.71 7.32 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e flash family fpgas revision 13 2-35 1.5 v lvcmos (jesd8-11) low-voltage cmos for 1.5 v is an extension of the lvcmos standard (jesd8-5) used for general- purpose 1.5 v applications. it uses a 1.5 v input buffer and a push-pull output buffer. table 2-41 ? minimum and maximum dc input and output levels 1.5 v lvcmos vil vih vol voh iol ioh iosl iosh iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 2 ma ?0.3 0.30 * vcci 0.7 * vcci 3.6 0.25 * vcci 0.75 * vcci 2 2 16 13 10 10 4 ma ?0.3 0.30 * vcci 0.7 * vcci 3.6 0.25 * vcci 0.75 * vcci 4 4 33 25 10 10 6 ma ?0.3 0.30 * vcci 0.7 * vcci 3. 6 0.25 * vcci 0.75 * vcci 6 6 39 32 10 10 8 ma ?0.3 0.30 * vcci 0.7 * vcci 3.6 0.25 * vcci 0.75 * vcci 8 8 55 66 10 10 12 ma ?0.3 0.30 * vcci 0.7 * vcci 3.6 0.25 * vcci 0.75 * vcci 12 12 55 66 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v< vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin < vcci. input current is larger when operating outside recommended ranges. 3. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 4. currents are measured at 85c junction temperature. 5. software default selection highlighted in gray. figure 2-10 ? ac loading table 2-42 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measur ing point* (v) vref (typ.) (v) c load (pf) 0 1.5 0.75 ? 35 note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points. test point test point enable path datapath 35 pf r = 1 k r to vcci for t lz / t zl / t zls r to gnd for t hz / t zh / t zhs 35 pf for t zh / t zhs / t zl / t zls 35 pf for t hz / t lz
proasic3e dc and switching characteristics 2-36 revision 13 timing characteristics table 2-43 ? 1.5 v lvcmos high slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.4 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 0.66 8.53 0.04 1.70 2.14 0. 43 7.26 8.53 3.39 2.79 9.50 10.77 ns ?1 0.56 7.26 0.04 1.44 1.82 0.36 6.18 7.26 2.89 2.37 8.08 9.16 ns ?2 0.49 6.37 0.03 1.27 1.60 0.32 5.42 6.37 2.53 2.08 7.09 8.04 ns 4 ma std. 0.66 5.41 0.04 1.70 2.14 0. 43 5.22 5.41 3.75 3.48 7.45 7.65 ns ?1 0.56 4.60 0.04 1.44 1.82 0.36 4.44 4.60 3.19 2.96 6.34 6.50 ns ?2 0.49 4.04 0.03 1.27 1.60 0.32 3.89 4.04 2.80 2.60 5.56 5.71 ns 6 ma std. 0.66 4.80 0.04 1.70 2.14 0. 43 4.89 4.75 3.83 3.67 7.13 6.98 ns ?1 0.56 4.09 0.04 1.44 1.82 0.36 4.16 4.04 3.26 3.12 6.06 5.94 ns ?2 0.49 3.59 0.03 1.27 1.60 0.32 3.65 3.54 2.86 2.74 5.32 5.21 ns 8 ma std. 0.66 4.42 0.04 1.70 2.14 0. 43 4.50 3.62 3.96 4.37 6.74 5.86 ns ?1 0.56 3.76 0.04 1.44 1.82 0.36 3.83 3.08 3.37 3.72 5.73 4.98 ns ?2 0.49 3.30 0.03 1.27 1.60 0.32 3.36 2.70 2.96 3.27 5.03 4.37 ns 12 ma std. 0.66 4.42 0.04 1.70 2.14 0.43 4.50 3.62 3.96 4.37 6.74 5.86 ns ?1 0.56 3.76 0.04 1.44 1.82 0.36 3.83 3.08 3.37 3.72 5.73 4.98 ns ?2 0.49 3.30 0.03 1.27 1.60 0.32 3.36 2.70 2.96 3.27 5.03 4.37 ns notes: 1. software default selection highlighted in gray. 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. table 2-44 ? 1.5 v lvcmos low slew commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.4 v drive strength speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units 2 ma std. 0.66 14.11 0.04 1.70 2.14 0.43 14.37 13.14 3.40 2.68 16.61 15.37 ns ?1 0.56 12.00 0.04 1.44 1.82 0.36 12. 22 11.17 2.90 2.28 14.13 13.08 ns ?2 0.49 10.54 0.03 1.27 1.60 0.32 10.73 9.81 2.54 2.00 12.40 11.48 ns 4 ma std. 0.66 11.23 0.04 1.70 2.14 0.4 3 11.44 9.87 3.77 3.36 13.68 12.10 ns ?1 0.56 9.55 0.04 1.44 1.82 0.36 9. 73 8.39 3.21 2.86 11.63 10.29 ns ?2 0.49 8.39 0.03 1.27 1.60 0.32 8.54 7.37 2.81 2. 51 10.21 9.04 ns 6 ma std. 0.66 10.45 0.04 1.70 2.14 0.43 10.65 9.24 3.84 3.55 12.88 11.48 ns ?1 0.56 8.89 0.04 1.44 1.82 0.36 9.06 7.86 3.27 3. 02 10.96 9.76 ns ?2 0.49 7.81 0.03 1.27 1.60 0.32 7.95 6.90 2.87 2.65 9.62 8.57 ns 8 ma std. 0.66 10.02 0.04 1.70 2.14 0.43 10.20 9.23 3.97 4.22 12.44 11.47 ns ?1 0.56 8.52 0.04 1.44 1.82 0.36 8.68 7.85 3.38 3. 59 10.58 9.75 ns ?2 0.49 7.48 0.03 1.27 1.60 0.32 7.62 6.89 2.97 3.15 9.29 8.56 ns 12 ma std. 0.66 10.02 0.04 1.70 2.14 0.43 10.20 9.23 3.97 4.22 12.44 11.47 ns ?1 0.56 8.52 0.04 1.44 1.82 0.36 8.68 7.85 3.38 3. 59 10.58 9.75 ns ?2 0.49 7.48 0.03 1.27 1.60 0.32 7.62 6.89 2.97 3.15 9.29 8.56 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e flash family fpgas revision 13 2-37 3.3 v pci, 3.3 v pci-x peripheral component interface for 3.3 v standard specifies support for 33 mhz and 66 mhz pci bus applications. ac loadings are defined per the pci/pci-x specificat ions for the datapath; microsemi loadings for enable path characterization are described in figure 2-11 . ac loadings are defined per pci/pc i-x specifications for the datapath; microsemi loading for tristate is described in ta b l e 2 - 4 6 . timing characteristics table 2-45 ? minimum and maximum dc input and output levels 3.3 v pci/pci-x vil vih vol voh iol ioh iosl iosh iil 1 iih 2 drive strength min. v max. v min. v max. v max. v min. vmama max. ma 3 max. ma 3 a 4 a 4 per pci specification per pci curves 10 10 notes: 1. iil is the input leakage current per i/o pin over recommended operation conditions where ?0.3 v< vin < vil. 2. iih is the input leakage current per i/o pin over recommended operating conditions vih < vin< vcci. input current is larger when operating outside recommended ranges. 3. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 4. currents are measured at 85c junction temperature. figure 2-11 ? ac loading test point enable path r to vcci for t lz / t zl / t zls 10 pf for t zh / t zhs / t zl / t zls 10 pf for t hz / t lz r to gnd for t hz / t zh / t zhs r = 1 k test point datapath r = 25 r to vcci for t dp (f) r to gnd for t dp (r) table 2-46 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measu ring point* (v) vref (typ.) (v) c load (pf) 0 3.3 0.285 * vcci for t dp(r) 0.615 * vcci for t dp(f) ?10 note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points. table 2-47 ? 3.3 v pci/pci-x commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v speed grade t dout t dp t din t py t pys t eout t zl t zh t lz t hz t zls t zhs units std. 0.66 2.81 0.04 1.05 1.67 0.43 2.86 2.00 3.28 3.61 5.09 4.23 ns ?1 0.56 2.39 0.04 0.89 1.42 0.36 2.43 1.70 2.79 3.07 4.33 3.60 ns ?2 0.49 2.09 0.03 0.78 1.25 0.32 2.13 1.49 2.45 2.70 3.80 3.16 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e dc and switching characteristics 2-38 revision 13 voltage-referenced i/o characteristics 3.3 v gtl gunning transceiver logic is a high-speed bus standard (jesd8-3). it provides a differential amplifier input buffer and an open-drain output buffer. the vcci pin should be connected to 3.3 v. timing characteristics table 2-48 ? minimum and maximum dc input and output levels 3.3 v gtl vil vih vol voh iol ioh iosl iosh iil iih drive strength min. v max. v min. v max. v max. v min. vmama max. ma 1 max. ma 1 a 2 a 2 20 ma 3 ?0.3 vref ? 0.05 vref + 0.05 3.6 0.4 ? 20 20 181 268 10 10 notes: 1. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 2. currents are measured at 85c junction temperature. 3. output drive strength is below jedec specification. figure 2-12 ? ac loading table 2-49 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) vref (typ.) (v) vtt (typ.) (v) c load (pf) vref ? 0.05 vref + 0.05 0.8 0.8 1.2 10 note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points. test point 10 pf 25 gtl vtt table 2-50 ? 3.3 v gtl commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v vref = 0.8 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.60 2.08 0.04 2.93 0. 43 2.04 2.08 4.27 4.31 ns ?1 0.51 1.77 0.04 2.50 0. 36 1.73 1.77 3.63 3.67 ns ?2 0.45 1.55 0.03 2.19 0. 32 1.52 1.55 3.19 3.22 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e flash family fpgas revision 13 2-39 2.5 v gtl gunning transceiver logic is a high-speed bus standard (jesd8-3). it provides a differential amplifier input buffer and an open-drain output buffer. the vcci pin should be connected to 2.5 v. timing characteristics table 2-51 ? minimum and maximum dc input and output levels 2.5 gtl vil vih vol voh iol ioh iosl iosh iil iih drive strength min., v max. v min. v max. v max. v min. vmama max. ma 1 max. ma 1 a 2 a 2 20 ma 3 ?0.3 vref ? 0.05 vref + 0.05 3.6 0.4 ? 20 20 124 169 10 10 notes: 1. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 2. currents are measured at 85c junction temperature. 3. output drive strength is below jedec specification. figure 2-13 ? ac loading table 2-52 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) vref (typ.) (v) vtt (typ.) (v) c load (pf) vref ? 0.05 vref + 0.05 0.8 0.8 1.2 10 note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points. test point 10 pf 25 gtl vtt table 2-53 ? 2.5 v gtl commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v vref = 0.8 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.60 2.13 0.04 2.46 0. 43 2.16 2.13 4.40 4.36 ns ?1 0.51 1.81 0.04 2.09 0. 36 1.84 1.81 3.74 3.71 ns ?2 0.45 1.59 0.03 1.83 0. 32 1.61 1.59 3.28 3.26 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e dc and switching characteristics 2-40 revision 13 3.3 v gtl+ gunning transceiver logic plus is a high-speed bus standard (jesd8-3). it provides a differential amplifier input buffer and an open-drain output buffer. the vcci pin should be connected to 3.3 v. timing characteristics table 2-54 ? minimum and maximum dc input and output levels 3.3 v gtl+ vil vih vol voh iol ioh iosl iosh iil iih drive strength min. v max. v min. v max. v max. v min. vmama max. ma 1 max. ma 1 a 2 a 2 35 ma ?0.3 vref ? 0.1 vref + 0.1 3.6 0.6 ? 35 35 181 268 10 10 notes: 1. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 2. currents are measured at 85c junction temperature. figure 2-14 ? ac loading table 2-55 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) vref (typ.) (v) vtt (typ.) (v) c load (pf) vref ? 0.1 vref + 0.1 1.0 1.0 1.5 10 note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points. test point 10 pf 25 gtl+ vtt table 2-56 ? 3.3 v gtl+ commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v, vref = 1.0 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.60 2.06 0.04 1.59 0. 43 2.09 2.06 4.33 4.29 ns ?1 0.51 1.75 0.04 1.35 0. 36 1.78 1.75 3.68 3.65 ns ?2 0.45 1.53 0.03 1.19 0. 32 1.56 1.53 3.23 3.20 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e flash family fpgas revision 13 2-41 2.5 v gtl+ gunning transceiver logic plus is a high-speed bus standard (jesd8-3). it provides a differential amplifier input buffer and an open-drain output buffer. the vcci pin should be connected to 2.5 v. timing characteristics table 2-57 ? minimum and maximum dc input and output levels 2.5 v gtl+ vil vih vol voh iol ioh iosl iosh iil iih drive strength min. v max. v min. v max. v max. v min. vmama max. ma 1 max. ma 1 a 2 a 2 33 ma ?0.3 vref ? 0.1 vref + 0.1 3.6 0.6 ? 33 33 124 169 10 10 notes: 1. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 2. currents are measured at 85c junction temperature. figure 2-15 ? ac loading table 2-58 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) vref (typ.) (v) vtt (typ.) (v) c load (pf) vref ? 0.1 vref + 0.1 1.0 1.0 1.5 10 note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points. test point 10 pf 25 gtl+ vtt table 2-59 ? 2.5 v gtl+ commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.3 v, vref = 1.0 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.60 2.21 0.04 1.51 0. 43 2.25 2.10 4.48 4.34 ns ?1 0.51 1.88 0.04 1.29 0. 36 1.91 1.79 3.81 3.69 ns ?2 0.45 1.65 0.03 1.13 0. 32 1.68 1.57 3.35 3.24 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e dc and switching characteristics 2-42 revision 13 hstl class i high-speed transceiver logic is a general-purpo se high-speed 1.5 v bus standard (eia/jesd8-6). proasic3e devices support class i. this provides a differential amplifier input buffer and a push-pull output buffer. timing characteristics table 2-60 ? minimum and maximum dc input and output levels hstl class i vil vih vol voh iol ioh iosl iosh iil iih drive strength min. v max. v min. v max. v max. v min. vmama max. ma 1 max. ma 1 a 2 a 2 8 ma ?0.3 vref ? 0.1 vref + 0.1 3.6 0.4 vcci ? 0.4 8 8 39 32 10 10 notes: 1. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 2. currents are measured at 85c junction temperature. figure 2-16 ? ac loading table 2-61 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) vref (typ.) (v) vtt (typ.) (v) c load (pf) vref ? 0.1 vref + 0.1 0.75 0.75 0.75 20 note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points. test point 20 pf 50 hstl class i vtt table 2-62 ? hstl class i commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = .4 v, vref = 0.75 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.66 3.18 0.04 2.12 0. 43 3.24 3.14 5.47 5.38 ns ?1 0.56 2.70 0.04 1.81 0. 36 2.75 2.67 4.66 4.58 ns ?2 0.49 2.37 0.03 1.59 0. 32 2.42 2.35 4.09 4.02 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e flash family fpgas revision 13 2-43 hstl class ii high-speed transceiver logic is a general-purpo se high-speed 1.5 v bus standard (eia/jesd8-6). proasic3e devices support class ii. this provides a differential amplifier input buffer and a push-pull output buffer. timing characteristics table 2-63 ? minimum and maximum dc input and output levels hstl class ii vil vih vol voh iol ioh iosl iosh iil iih drive strength min. v max. v min. v max. v max., v min. vmama max. ma 1 max. ma 1 a 2 a 2 15 ma 3 ?0.3 vref ? 0.1 vref + 0.1 3.6 0.4 vcci ? 0.4 15 15 55 66 10 10 notes: 1. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 2. currents are measured at 85c junction temperature. 3. output drive strength is below jedec specification. figure 2-17 ? ac loading table 2-64 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) vref (typ.) (v) vtt (typ.) (v) c load (pf) vref ? 0.1 vref + 0.1 0.75 0.75 0.75 20 note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points. test point 20 pf 25 hstl class ii vtt table 2-65 ? hstl class ii commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 1.4 v, vref = 0.75 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.66 3.02 0.04 2.12 0. 43 3.08 2.71 5.32 4.95 ns ?1 0.56 2.57 0.04 1.81 0. 36 2.62 2.31 4.52 4.21 ns ?2 0.49 2.26 0.03 1.59 0. 32 2.30 2.03 3.97 3.70 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e dc and switching characteristics 2-44 revision 13 sstl2 class i stub-speed terminated logic for 2.5 v memory bus standard (jesd8-9). proasic3e devices support class i. this provides a differential amplif ier input buffer and a push-pull output buffer. timing characteristics table 2-66 ? minimum and maximum dc input and output levels sstl2 class i vil vih vol voh iol ioh iosl iosh iil iih drive strength min. v max. v min. v max. v max. v min. vmama max. ma 1 max. ma 1 a 2 a 2 15 ma ?0.3 vref ? 0.2 vref + 0.2 3.6 0.54 vcci ? 0.62 15 15 87 83 10 10 notes: 1. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 2. currents are measured at 85c junction temperature. figure 2-18 ? ac loading table 2-67 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) vref (typ.) (v) vtt (typ.) (v) c load (pf) vref ? 0.2 vref + 0.2 1.25 1.25 1.25 30 note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points. test point 30 pf 50 25 sstl2 class i vtt table 2-68 ? sstl 2 class i commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.3 v, vref = 1.25 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.66 2.13 0.04 1.33 0. 43 2.17 1.85 4.40 4.08 ns ?1 0.56 1.81 0.04 1.14 0. 36 1.84 1.57 3.74 3.47 ns ?2 0.49 1.59 0.03 1.00 0. 32 1.62 1.38 3.29 3.05 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e flash family fpgas revision 13 2-45 sstl2 class ii stub-speed terminated logic for 2.5 v memory bus standard (jesd8-9). proasic3e devices support class ii. this provides a differential ampl ifier input buffer and a push-pull output buffer. timing characteristics table 2-69 ? minimum and maximum dc input and output levels sstl2 class ii vil vih vol voh iol ioh iosl iosh iil iih drive strength min. v max. v min. v max. v max. v min. vmama max. ma 1 max. ma 1 a 2 a 2 18 ma ?0.3 vref ? 0.2 vref + 0.2 3 .6 0.35 vcci ? 0.43 18 18 124 169 10 10 notes: 1. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 2. currents are measured at 85c junction temperature. figure 2-19 ? ac loading table 2-70 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) vref (typ.) (v) vtt (typ.) (v) c load (pf) vref ? 0.2 vref + 0.2 1.25 1.25 1.25 30 note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points. test point 30 pf 25 25 sstl2 class ii vtt table 2-71 ? sstl 2 class ii commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.3 v, vref = 1.25 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.66 0.66 2.17 0.04 1. 33 0.43 2.21 1.77 4.44 ns ?1 0.56 0.56 1.84 0.04 1. 14 0.36 1.88 1.51 3.78 ns ?2 0.49 0.49 1.62 0.03 1. 00 0.32 1.65 1.32 3.32 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e dc and switching characteristics 2-46 revision 13 sstl3 class i stub-speed terminated logic for 3.3 v memory bus standard (jesd8-8). proasic3e devices support class i. this provides a differential amplif ier input buffer and a push-pull output buffer. timing characteristics table 2-72 ? minimum and maximum dc input and output levels sstl3 class i vil vih vol voh iol ioh iosl iosh iil iih drive strength min. v max. v min. v max. v max. v min. vmama max. ma 1 max. ma 1 a 2 a 2 14 ma ?0.3 vref ? 0.2 vref + 0.2 3.6 0.7 vcci ? 1.1 14 14 54 51 10 10 notes: 1. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 2. currents are measured at 85c junction temperature. figure 2-20 ? ac loading table 2-73 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) vref (typ.) (v) vtt (typ.) (v) c load (pf) vref ? 0.2 vref + 0.2 1.5 1.5 1.485 30 note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points. test point 30 pf 50 25 sstl3 class i vtt table 2-74 ? sstl3 class i commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v, vref = 1.5 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.66 2.31 0.04 1.25 0. 43 2.35 1.84 4.59 4.07 ns ?1 0.56 1.96 0.04 1.06 0. 36 2.00 1.56 3.90 3.46 ns ?2 0.49 1.72 0.03 0.93 0. 32 1.75 1.37 3.42 3.04 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e flash family fpgas revision 13 2-47 sstl3 class ii stub-speed terminated logic for 3.3 v memory bus standard (jesd8-8). proasic3e devices support class ii. this provides a differential ampl ifier input buffer and a push-pull output buffer. timing characteristics table 2-75 ? minimum and maximum dc input and output levels sstl3 class ii vil vih vol voh iol ioh iosl iosh iil iih drive strength min. v max. v min. v max. v max. v min. vmama max. ma 1 max. ma 1 a 2 a 2 21 ma ?0.3 vref ? 0.2 vref + 0.2 3.6 0.5 vcci ? 0.9 21 21 109 103 10 10 notes: 1. currents are measured at high temperature (100 c junction temperature) and maximum voltage. 2. currents are measured at 85c junction temperature. figure 2-21 ? ac loading table 2-76 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measuring point* (v) vref (typ.) (v) vtt (typ.) (v) c load (pf) vref ? 0.2 vref + 0.2 1.5 1.5 1.485 30 note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points. test point 30 pf 25 25 sstl3 class ii vtt table 2-77 ? sstl3 class ii commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v, vref = 1.5 v speed grade t dout t dp t din t py t eout t zl t zh t lz t hz t zls t zhs units std. 0.66 2.07 0.04 1.25 0. 43 2.10 1.67 4.34 3.91 ns ?1 0.56 1.76 0.04 1.06 0. 36 1.79 1.42 3.69 3.32 ns ?2 0.49 1.54 0.03 0.93 0. 32 1.57 1.25 3.24 2.92 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e dc and switching characteristics 2-48 revision 13 differential i/o characteristics physical implementation configuration of the i/o modules as a differential pair is handled by the designer software when the user instantiates a differential i/o macro in the design. differential i/os can also be used in conjuncti on with the embedded input r egister (inreg), output register (outreg), enable register (enreg), and ddr. however, there is no support for bidirectional i/os or tristates with the lvpecl standards. lvds low-voltage differential signaling (ansi/tia/eia-644 ) is a high-speed, differential i/o standard. it requires that one data bit be carried through two si gnal lines, so two pins are needed. it also requires external resistor termination. the full implementation of the lvds transmitte r and receiver is shown in an example in figure 2-22 . the building blocks of the lvds transmitter-receiver are one transmitte r macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. the values for the three driver resistors are different from those used in the lvpecl implementation because the output standard specifications are different. along with lvds i/o, proasic3e also supports bu s lvds structure and multipoint lvds (m-lvds) configuration (up to 40 nodes). figure 2-22 ? lvds circuit diag ram and board-level implementation 140 ? 100 ? z 0 = 50 ? z 0 = 50 ? 165 ? 165 ? + ? p n p n inbuf_lvds outbuf_lvds fpga fpga bourns part number: cat16-lv4f12
proasic3e flash family fpgas revision 13 2-49 table 2-78 ? lvds minimum and maximum dc input and output levels dc parameter description min. typ. max. units vcci supply voltage 2.375 2.5 2.625 v vol output low voltage 0.9 1.075 1.25 v voh output high voltage 1.25 1.425 1.6 v iol 1 output lower current 0.65 0.91 1.16 ma ioh 1 output high current 0.65 0.91 1.16 ma vi input voltage 0 2.925 v iih 2 input high leakage current 10 a iil 2 input low leakage current 10 a vodiff differential output voltage 250 350 450 mv vocm output common mode voltage 1.125 1.25 1.375 v vicm input common mode voltage 0.05 1.25 2.35 v vidiff input differential voltage 2 100 350 mv notes: 1. iol/ ioh defined by vodiff/(resistor network). 2. currents are measured at 85c junction temperature. table 2-79 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measu ring point* (v) vref (typ.) (v) 1.075 1.325 cross point ? note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points.
proasic3e dc and switching characteristics 2-50 revision 13 timing characteristics b-lvds/m-lvds bus lvds (b-lvds) and multipoint lvds (m-lvds) s pecifications extend the existing lvds standard to high-performance multipoint bus applications. multid rop and multipoint bus configurations may contain any combination of drivers, receiv ers, and transceivers. microsemi lv ds drivers provide the higher drive current required by b-lvds and m-lvds to accomm odate the loading. the drivers require series terminations for better signal quality and to control voltage swing. termination is also required at both ends of the bus since the driver can be located anywhere on the bus. these configurations can be implemented using the tribuf_lvds and bibuf_lvds macros along with appr opriate terminations. multipoint designs using microsemi lvds macros can achieve up to 200 mhz with a maximum of 20 loads. a sample application is given in figure 2-23 . the input and output buffer delays are available in the lvds section in table 2-80 . example: for a bus consisting of 20 equidistant lo ads, the following terminations provide the required differential voltage, in worst-case industrial operating conditions, at the farthest receiver: r s =60 ? and r t =70 ? , given z 0 =50 ? (2") and z stub =50 ? (~1.5"). table 2-80 ? lvds commercial-case conditions: tj = 70c, worst-case vcc = 1.425 v, worst-case vcci = 2.3 v speed grade t dout t dp t din t py units std. 0.66 1.87 0.04 1.82 ns ?1 0.56 1.59 0.04 1.55 ns ?2 0.49 1.40 0.03 1.36 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. figure 2-23 ? b-lvds/m-lvds multipoint application using lvds i/o buffers ... r t r t bibuf_lvds r + - t + - r + - t + - d + - en en en en en receiver transceiver receiver transceiver driver r s r s r s r s r s r s r s r s r s r s z stub z stub z stub z stub z stub z stub z stub z stub z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0
proasic3e flash family fpgas revision 13 2-51 lvpecl low-voltage positive emitter-coupled logic (lvpecl) is another differ ential i/o standard. it requires that one data bit be carried through two signal lines . like lvds, two pins are needed. it also requires external resistor termination. the full implementation of the lvds transmitte r and receiver is shown in an example in figure 2-24 . the building blocks of the lvpecl transmitter-receiver are one transm itter macro, one rece iver macro, three board resistors at the transmitter end, and one resistor at the receiver end. the values for the three driver resistors are different from those used in the lvds implementation beca use the output standard specifications are different. timing characteristics figure 2-24 ? lvpecl circuit diagram and board-level im plementation table 2-81 ? minimum and maximum dc input and output levels dc parameter descrip tion min. max. min. max. min. max. units vcci supply voltage 3.0 3.3 3.6 v vol output low voltage 0.96 1.27 1.06 1.43 1.30 1.57 v voh output high voltage 1.8 2.11 1.92 2.28 2.13 2.41 v vil, vih input low, input high voltages 0 3.6 0 3.6 0 3.6 v vodiff differential output volt age 0.625 0.97 0.625 0.97 0.625 0.97 v vocm output common-mode voltage 1.762 1.98 1.762 1.98 1.762 1.98 v vicm input common-mode voltage 1.01 2.57 1.01 2.57 1.01 2.57 v vidiff input differential voltage 300 300 300 mv table 2-82 ? ac waveforms, measuring points, and capacitive loads input low (v) input high (v) measu ring point* (v) vref (typ.) (v) 1.64 1.94 cross point ? note: *measuring point = vtrip. see table 2-15 on page 2-18 for a complete table of trip points. 187 w 100 ? z 0 = 50 ? z 0 = 50 ? 100 ? 100 ? + ? p n p n inbuf_lvpecl outbuf_lvpecl fpga fpga bourns part number: cat16-pc4f12 table 2-83 ? lvpecl commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v, worst-case vcci = 3.0 v speed grade t dout t dp t din t py units std. 0.66 1.83 0.04 1.63 ns ?1 0.56 1.55 0.04 1.39 ns ?2 0.49 1.36 0.03 1.22 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e dc and switching characteristics 2-52 revision 13 i/o register specifications fully registered i/o buffers with synchronous enable and asynchronous preset figure 2-25 ? timing model of registered i/o buffers with synchronous enable and asynchronous preset inbuf inbuf inbuf tribuf clkbuf inbuf inbuf clkbuf data input i/o register with: active high enable active high preset positive-edge triggered data output register and enable output register with: active high enable active high preset postive-edge triggered pad out clk enable preset data_out data eout dout enable clk dq dfn1e1p1 pre dq dfn1e1p1 pre dq dfn1e1p1 pre d_enable a b c d e e e e f g h i j l k y core array
proasic3e flash family fpgas revision 13 2-53 table 2-84 ? parameter definition and measuring nodes parameter name parameter definition measuring nodes (from, to)* t oclkq clock-to-q of the output data register h, dout t osud data setup time for the output data register f, h t ohd data hold time for the output data register f, h t osue enable setup time for the output data register g, h t ohe enable hold time for the output data register g, h t opre2q asynchronous preset-to-q of the output data register l, dout t orempre asynchronous preset removal time for the output data register l, h t orecpre asynchronous preset recovery time for the output data register l, h t oeclkq clock-to-q of the output enable register h, eout t oesud data setup time for the output enable register j, h t oehd data hold time for the output enable register j, h t oesue enable setup time for the output enable register k, h t oehe enable hold time for the output enable register k, h t oepre2q asynchronous preset-to-q of the output enable register i, eout t oerempre asynchronous preset removal time for the output enable register i, h t oerecpre asynchronous preset recovery time for the output enable register i, h t iclkq clock-to-q of the inpu t data register a, e t isud data setup time for the input data register c, a t ihd data hold time for the input data register c, a t isue enable setup time for the input data register b, a t ihe enable hold time for the input data register b, a t ipre2q asynchronous preset-to-q of the input data register d, e t irempre asynchronous preset removal time for the input data register d, a t irecpre asynchronous preset recovery time for the input data register d, a note: *see figure 2-25 on page 2-52 for more information.
proasic3e dc and switching characteristics 2-54 revision 13 fully registered i/o buffers with synchronous enable and asynchronous clear figure 2-26 ? timing model of the registered i/o buffers with synchronous enable and asynchronous clear enable clk pad out clk enable clr data_out data y aa eout dout core array dq dfn1e1c1 e clr dq dfn1e1c1 e clr dq dfn1e1c1 e clr d_enable bb cc dd ee ff gg ll hh jj kk clkbuf inbuf inbuf tribuf inbuf inbuf clkbuf inbuf data input i/o register with active high enable active high clear positive-edge triggered data output register and enable output register with active high enable active high clear positive-edge triggered
proasic3e flash family fpgas revision 13 2-55 table 2-85 ? parameter definition and measuring nodes parameter name parameter definition measuring nodes (from, to)* t oclkq clock-to-q of the output data register hh, dout t osud data setup time for the output data register ff, hh t ohd data hold time for the output data register ff, hh t osue enable setup time for the output data register gg, hh t ohe enable hold time for the output data register gg, hh t oclr2q asynchronous clear-to-q of the output data register ll, dout t oremclr asynchronous clear removal time for the output data register ll, hh t orecclr asynchronous clear recovery time for the output data register ll, hh t oeclkq clock-to-q of the output enable register hh, eout t oesud data setup time for the output enable register jj, hh t oehd data hold time for the output enable register jj, hh t oesue enable setup time for the output enable register kk, hh t oehe enable hold time for the output enable register kk, hh t oeclr2q asynchronous clear-to-q of the output enable register ii, eout t oeremclr asynchronous clear removal time for the output enable register ii, hh t oerecclr asynchronous clear recovery time for the output enable register ii, hh t iclkq clock-to-q of the input data register aa, ee t isud data setup time for the input data register cc, aa t ihd data hold time for the input data register cc, aa t isue enable setup time for the input data register bb, aa t ihe enable hold time for the input data register bb, aa t iclr2q asynchronous clear-to-q of th e input data register dd, ee t iremclr asynchronous clear removal time for the input data register dd, aa t irecclr asynchronous clear recovery time for the input data register dd, aa note: *see figure 2-26 on page 2-54 for more information.
proasic3e dc and switching characteristics 2-56 revision 13 input register timing characteristics figure 2-27 ? input register timing diagram 50% preset clear out_1 clk data enable t isue 50% 50% t isud t ihd 50% 50% t iclkq 1 0 t ihe t irecpre t irempre t irecclr t iremclr t iwclr t iwpre t ipre2q t iclr2q t ickmpwh t ickmpwl 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% table 2-86 ? input data register propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description ?2 ?1 std. units t iclkq clock-to-q of the input data register 0.24 0.27 0.32 ns t isud data setup time for the input data register 0.26 0.30 0.35 ns t ihd data hold time for the input data register 0.00 0.00 0.00 ns t isue enable setup time for the input data register 0.37 0.42 0.50 ns t ihe enable hold time for the input data register 0.00 0.00 0.00 ns t iclr2q asynchronous clear-to-q of the i nput data register 0.45 0.52 0.61 ns t ipre2q asynchronous preset-to-q of the i nput data register 0.45 0.52 0.61 ns t iremclr asynchronous clear removal time for the input data register 0.00 0.00 0.00 ns t irecclr asynchronous clear recovery time for the input data register 0.22 0.25 0.30 ns t irempre asynchronous preset removal time for the input data register 0.00 0.00 0.00 ns t irecpre asynchronous preset recovery time fo r the input data register 0.22 0.25 0.30 ns t iwclr asynchronous clear minimum pulse width for the input data register 0.22 0.25 0.30 ns t iwpre asynchronous preset minimum pulse width for the input data register 0.22 0.25 0.30 ns t ickmpwh clock minimum pulse width high for t he input data register 0.36 0.41 0.48 ns t ickmpwl clock minimum pulse width low for the input data register 0.32 0.37 0.43 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e flash family fpgas revision 13 2-57 output register timing characteristics figure 2-28 ? output register timing diagram preset clear dout clk data_out enable t osue 50% 50% t osud t ohd 50% 50% t oclkq 1 0 t ohe t orecpre t orempre t orecclr t oremclr t owclr t owpre t opre2q t oclr2q t ockmpwh t ockmpwl 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% table 2-87 ? output data register propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description ?2 ?1 std. units t oclkq clock-to-q of the output da ta register 0.59 0.67 0.79 ns t osud data setup time for the output data register 0.31 0.36 0.42 ns t ohd data hold time for the output data register 0.00 0.00 0.00 ns t osue enable setup time for the out put data register 0.44 0.50 0.59 ns t ohe enable hold time for the outp ut data register 0.00 0.00 0.00 ns t oclr2q asynchronous clear-to-q of the ou tput data register 0.80 0.91 1.07 ns t opre2q asynchronous preset-to-q of the ou tput data register 0.80 0.91 1.07 ns t oremclr asynchronous clear removal time for th e output data register 0.00 0.00 0.00 ns t orecclr asynchronous clear recovery time for the output data re gister 0.22 0.25 0.30 ns t orempre asynchronous preset removal time for the output data register 0.00 0.00 0.00 ns t orecpre asynchronous preset recovery time for the output data re gister 0.22 0.25 0.30 ns t owclr asynchronous clear minimum pulse width fo r the output data register 0.22 0.25 0.30 ns t owpre asynchronous preset minimum pulse width for the output data register 0.22 0.25 0.30 ns t ockmpwh clock minimum pulse width high for the output data register 0.36 0.41 0.48 ns t ockmpwl clock minimum pulse width low for the output data register 0.32 0.37 0.43 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e dc and switching characteristics 2-58 revision 13 output enable register timing characteristics figure 2-29 ? output enable register timing diagram 50% preset clear eout clk d_enable enable t oesue 50% 50% t oesud t oehd 50% 50% t oeclkq 1 0 t oehe t oerecpre t oerempre t oerecclr t oeremclr t oewclr t oewpre t oepre2q t oeclr2q t oeckmpwh t oeckmpwl 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% table 2-88 ? output enable register propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description ?2 ?1 std. units t oeclkq clock-to-q of the output enable register 0.59 0.67 0.79 ns t oesud data setup time for the output enable register 0.31 0.36 0.42 ns t oehd data hold time for the output enable register 0.00 0.00 0.00 ns t oesue enable setup time for the output enable register 0.44 0.50 0.58 ns t oehe enable hold time for the out put enable register 0.00 0.00 0.00 ns t oeclr2q asynchronous clear-to-q of the out put enable register 0.67 0.76 0.89 ns t oepre2q asynchronous preset-to-q of the ou tput enable regist er 0.67 0.76 0.89 ns t oeremclr asynchronous clear removal time for the output enable register 0.00 0.00 0.00 ns t oerecclr asynchronous clear recovery time for t he output enable register 0.22 0.25 0.30 ns t oerempre asynchronous preset removal time for th e output enable register 0.00 0.00 0.00 ns t oerecpre asynchronous preset recovery time for the output enable r egister 0.22 0.25 0.30 ns t oewclr asynchronous clear minimum pulse width for the output enable register 0.22 0.25 0.30 ns t oewpre asynchronous preset minimum pulse width for the output enable register 0.22 0.25 0.30 ns t oeckmpwh clock minimum pulse width high for the output enable register 0.36 0.41 0.48 ns t oeckmpwl clock minimum pulse width low for the output enable register 0.32 0.37 0.43 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e flash family fpgas revision 13 2-59 ddr module specifications input ddr module figure 2-30 ? input ddr timing model table 2-89 ? parameter definitions parameter name parameter definition measuring nodes (from, to) t ddriclkq1 clock-to-out out_qr b, d t ddriclkq2 clock-to-out out_qf b, e t ddrisud data setup time of ddr input a, b t ddrihd data hold time of ddr input a, b t ddriclr2q1 clear-to-out out_qr c, d t ddriclr2q2 clear-to-out out_qf c, e t ddriremclr clear removal c, b t ddrirecclr clear recovery c, b input ddr data clk clkbuf inbuf out_qf (to core) ff2 ff1 inbuf clr ddr_in e a b c d out_qr (to core)
proasic3e dc and switching characteristics 2-60 revision 13 timing characteristics figure 2-31 ? input ddr timing diagram t ddriclr2q2 t ddriremclr t ddrirecclr t ddriclr2q1 12 3 4 5 6 7 8 9 clk data clr out_qr out_qf t ddriclkq1 2 4 6 3 5 7 t ddrihd t ddrisud t ddriclkq2 table 2-90 ? input ddr propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description ?2 ?1 std. units t ddriclkq1 clock-to-out out_qr for input ddr 0.39 0.44 0.52 ns t ddriclkq2 clock-to-out out_qf for input ddr 0.27 0.31 0.37 ns t ddrisud data setup for input ddr 0.28 0.32 0.38 ns t ddrihd data hold for input ddr 0.00 0.00 0.00 ns t ddriclr2q1 asynchronous clear to out out_qr for input ddr 0.57 0.65 0.76 ns t ddriclr2q2 asynchronous clear-to-out out_ qf for input ddr 0.46 0.53 0.62 ns t ddriremclr asynchronous clear removal time for input ddr 0.00 0.00 0.00 ns t ddrirecclr asynchronous clear recovery time for input ddr 0.22 0.25 0.30 ns t ddriwclr asynchronous clear minimum pulse width for input ddr 0.22 0.25 0.30 ns t ddrickmpwh clock minimum pulse width high for input ddr 0.36 0.41 0.48 ns t ddrickmpwl clock minimum pulse width low for input ddr 0.32 0.37 0.43 ns f ddrimax maximum frequency for input ddr 1404 1232 1048 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e flash family fpgas revision 13 2-61 output ddr module figure 2-32 ? output ddr timing model table 2-91 ? parameter definitions parameter name parameter defini tion measuring no des (from, to) t ddroclkq clock-to-out b, e t ddroclr2q asynchronous clear-to-out c, e t ddroremclr clear removal c, b t ddrorecclr clear recovery c, b t ddrosud1 data setup data_f a, b t ddrosud2 data setup data_r d, b t ddrohd1 data hold data_f a, b t ddrohd2 data hold data_r d, b data_f (from core) clk clkbuf out ff2 inbuf clr ddr_out output ddr ff1 0 1 x x x x x x x a b d e c c b outbuf data_r (from core)
proasic3e dc and switching characteristics 2-62 revision 13 timing characteristics figure 2-33 ? output ddr timing diagram 11 6 1 7 2 8 3 910 45 28 3 9 t ddroremclr t ddrohd1 t ddroremclr t ddrohd2 t ddrosud2 t ddroclkq t ddrorecclr clk data_r data_f clr out t ddroclr2q 710 4 table 2-92 ? output ddr propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description ?2 ?1 std. units t ddroclkq clock-to-out of ddr for output ddr 0.70 0.80 0.94 ns t ddrosud1 data_f data setup for output ddr 0.38 0.43 0.51 ns t ddrosud2 data_r data setup for output ddr 0.38 0.43 0.51 ns t ddrohd1 data_f data hold for ou tput ddr 0.00 0.00 0.00 ns t ddrohd2 data_r data hold for output ddr 0.00 0.00 0.00 ns t ddroclr2q asynchronous clear-to-out for output ddr 0.80 0.91 1.07 ns t ddroremclr asynchronous clear removal time for output ddr 0.00 0.00 0.00 ns t ddrorecclr asynchronous clear recovery time for output ddr 0.22 0.25 0.30 ns t ddrowclr1 asynchronous clear minimum pulse width for output ddr 0.22 0.25 0.30 ns t ddrockmpwh clock minimum pulse width high for the output ddr 0.36 0.41 0.48 ns t ddrockmpwl clock minimum pulse width low fo r the output ddr 0.32 0.37 0.43 ns f ddomax maximum frequency for the output ddr 1404 1232 1048 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e flash family fpgas revision 13 2-63 versatile characteristics versatile specifications as a combinatorial module the proasic3e library offers all combinations of lu t-3 combinatorial functions. in this section, timing characteristics are presented for a sample of the library. for more details, refer to the fusion, igloo ? /e, and proasic3/e macro library guide . figure 2-34 ? sample of combinatorial cells maj3 a c by mux2 b 0 1 a s y ay b b a xor2 y nor2 b a y b a y or2 inv a y and2 b a y nand3 b a c xor3 y b a c nand2
proasic3e dc and switching characteristics 2-64 revision 13 figure 2-35 ? timing model and waveforms t pd a b t pd = max(t pd(rr) , t pd(rf) , t pd(ff) , t pd(fr) ) where edges are applicable for the particular combinatorial cell y nand2 or any combinatorial logic t pd t pd 50% vcc vcc vcc 50% gnd a, b, c 50% 50% 50% (rr) (rf) gnd out out gnd 50% (ff) (fr) t pd t pd
proasic3e flash family fpgas revision 13 2-65 timing characteristics versatile specifications as a sequential module the proasic3e library offers a wide variety of sequenti al cells, including flip-flops and latches. each has a data input and optional enable, clear, or preset. in th is section, timing characteristics are presented for a representative sample from the librar y. for more details, refer to the fusion, igloo/e, and proasic3/e macro library guide . table 2-93 ? combinatorial cell propagation delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v combinatorial cell equation parameter ?2 ?1 std. units inv y = !a t pd 0.40 0.46 0.54 ns and2 y = a b t pd 0.47 0.54 0.63 ns nand2 y = !(a b) t pd 0.47 0.54 0.63 ns or2 y = a + b t pd 0.49 0.55 0.65 ns nor2 y = !(a + b) t pd 0.49 0.55 0.65 ns xor2 y = a ?? bt pd 0.74 0.84 0.99 ns maj3 y = maj(a , b, c) t pd 0.70 0.79 0.93 ns xor3 y = a ? b ?? ct pd 0.87 1.00 1.17 ns mux2 y = a !s + b s t pd 0.51 0.58 0.68 ns and3 y = a b c t pd 0.56 0.64 0.75 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. figure 2-36 ? sample of sequential cells dq dfn1 data clk out d q dfn1c1 data clk out clr dq dfi1e1p1 data clk out en pre d q dfn1e1 data clk out en
proasic3e dc and switching characteristics 2-66 revision 13 timing characteristics figure 2-37 ? timing model and waveforms pre clr out clk data en t sue 50% 50% t sud t hd 50% 50% t clkq 0 t he t recpre t rempre t recclr t remclr t wclr t wpre t pre2q t clr2q t ckmpwh t ckmpwl 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% table 2-94 ? register delays commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description ?2 ?1 std. units t clkq clock-to-q of the core register 0.55 0.63 0.74 ns t sud data setup time for the core register 0.43 0.49 0.57 ns t hd data hold time for the core register 0.00 0.00 0.00 ns t sue enable setup time for the core register 0.45 0.52 0.61 ns t he enable hold time for the core register 0.00 0.00 0.00 ns t clr2q asynchronous clear-to-q of the core register 0.40 0.45 0.53 ns t pre2q asynchronous preset-to-q of th e core register 0.40 0.45 0.53 ns t remclr asynchronous clear removal time for the core register 0.00 0.00 0.00 ns t recclr asynchronous clear recovery time for the core register 0.22 0.25 0.30 ns t rempre asynchronous preset removal time for the core register 0.00 0.00 0.00 ns t recpre asynchronous preset recovery time for the core register 0.22 0.25 0.30 ns t wclr asynchronous clear minimum pulse width for the core register 0.22 0.25 0.30 ns t wpre asynchronous preset minimum pulse widt h for the core register 0.22 0.25 0.30 ns t ckmpwh clock minimum pulse width high for the core register 0.32 0.37 0.43 ns t ckmpwl clock minimum pulse width low for the core register 0.36 0.41 0.48 ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e flash family fpgas revision 13 2-67 global resource characteristics a3pe600 clock tree topology clock delays are device-specific. figure 2-38 is an example of a global tree used for clock routing. the global tree presented in figure 2-38 is driven by a ccc located on t he west side of the a3pe600 device. it is used to drive all d- flip-flops in the device. global tree timing characteristics global clock delays include the central rib delay, the spine delay, and the row delay. delays do not include i/o input buffer clock delays, as these are i/o standard?dependent, and the clock may be driven and conditioned internally by the ccc module. for more details on clock conditioning capabilities, refer to the "clock conditioning circuits" section on page 2-69 . table 2-95 on page 2-68 , table 2-96 on page 2-68 , and table 2-97 on page 2-68 present minimum and maximum global clock delays within the device. minimum and maximum delays are measured with minimum and maximum loading. figure 2-38 ? example of global tree use in an a3pe600 device for clock routing central global rib versatile rows global spine ccc
proasic3e dc and switching characteristics 2-68 revision 13 timing characteristics table 2-95 ? a3pe600 global resource commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description ?2 ?1 std. units min. 1 max. 2 min. 1 max. 2 min. 1 max. 2 t rckl input low delay for global clo ck 0.83 1.04 0.94 1.18 1.11 1.39 ns t rckh input high delay for global clo ck 0.81 1.06 0.93 1.21 1.09 1.42 ns t rckmpwh minimum pulse width high for global clock 0.75 0.85 1.00 ns t rckmpwl minimum pulse width low for global clock 0.85 0.96 1.13 ns t rcksw maximum skew for global clock 0.25 0.28 0.33 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. table 2-96 ? a3pe1500 global resource commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description ?2 ?1 std. units min. 1 max. 2 min. 1 max. 2 min. 1 max. 2 t rckl input low delay for global cl ock 1.071.291.221.471.431.72 ns t rckh input high delay for global cloc k 1.061.321.211.501.421.76 ns t rckmpwh minimum pulse width high for global clock 0.75 0.85 1.00 ns t rckmpwl minimum pulse width low for global clock 0.85 0.96 1.13 ns t rcksw maximum skew for global clock 0.26 0.29 0.34 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. table 2-97 ? a3pe3000 global resource commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description ?2 ?1 std. units min. 1 max. 2 min. 1 max. 2 min. 1 max. 2 t rckl input low delay for global cl ock 1.411.621.601.851.882.17 ns t rckh input high delay for global cloc k 1.401.661.591.891.872.22 ns t rckmpwh minimum pulse width high for global clock 0.75 0.85 1.00 ns t rckmpwl minimum pulse width low for global clock 0.85 0.96 1.13 ns t rcksw maximum skew for global clock 0.26 0.29 0.35 ns notes: 1. value reflects minimum load. the delay is measured from the ccc output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. value reflects maximum load. the delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e flash family fpgas revision 13 2-69 clock conditioning circuits ccc electrical specifications timing characteristics table 2-98 ? proasic3e ccc/pll specification parameter minimum typical maximum units clock conditioning circuitry input frequency f in_ccc 1.5 350 mhz clock conditioning circuitry output frequency f out_ccc 0.75 350 mhz delay increments in programmable delay blocks 1, 2 160 3 ps serial clock (sclk) for dynamic pll 4 125 mhz number of programmable values in each programmable delay block 32 input period jitter 1.5 ns ccc output peak-to-peak period jitter f ccc_out max peak-to-peak period jitter 1 global network used 3 global networks used 0.75 mhz to 24 mhz 0.50% 0.70% 24 mhz to 100 mhz 1.00% 1.20% 100 mhz to 250 mhz 1.75% 2.00% 250 mhz to 350 mhz 2.50% 5.60% acquisition time lockcontrol = 0 300 s lockcontrol = 1 6.0 ms tracking jitter 5 lockcontrol = 0 1.6 ns lockcontrol = 1 0.8 ns output duty cycle 48.5 51.5 % delay range in block: programmable delay 1 1, 2 0.6 5.56 ns delay range in block: programmable delay 2 1,2 0.025 5.56 ns delay range in block: fixed delay 1,4 2.2 ns notes: 1. this delay is a function of voltage and temperature. see table 2-6 on page 2-5 for deratings 2. t j = 25c, vcc = 1.5 v. 3. when the ccc/pll core is generated by microsemi core generator software, not all delay values of the specified delay increments are available. refer to the libero soc online help for more information. 4. maximum value obtained for a ?2 speed-grade device in worst-case commercial conditions. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values. 5. tracking jitter is defined as the variation in clock edge position of pll outputs with reference to the pll input clock edge. tracking jitter does not measure the variation in pll output period, which is covered by the period jitter parameter.
proasic3e dc and switching characteristics 2-70 revision 13 note: peak-to-peak jitter meas urements are defined by t peak-to-peak = t period_max ? t period_min . figure 2-39 ? peak-to-peak jitter definition t period_max t period_min output signal
proasic3e flash family fpgas revision 13 2-71 embedded sram and fifo characteristics sram figure 2-40 ? ram models addra11 douta8 douta7 douta0 doutb8 doutb7 doutb0 addra10 addra0 dina8 dina7 dina0 widtha1 widtha0 pipea wmodea blka wena clka addrb11 addrb10 addrb0 dinb8 dinb7 dinb0 widthb1 widthb0 pipeb wmodeb blkb wenb clkb ram4k9 raddr8 rd17 raddr7 rd16 raddr0 rd0 wd17 wd16 wd0 ww1 ww0 rw1 rw0 pipe ren rclk ram512x18 waddr8 waddr7 waddr0 wen wclk reset reset
proasic3e dc and switching characteristics 2-72 revision 13 timing waveforms figure 2-41 ? ram read for pass-through output. applicable to both ram4k9 and ram512x18. figure 2-42 ? ram read for pipelined output. appl icable to both ram4k9 and ram512x18. clk [r|w]addr blk wen dout|rd a 0 a 1 a 2 d 0 d 1 d 2 t cyc t ckh t ckl t as t ah t bks t ens t enh t doh1 t bkh d n t ckq1 clk [r|w]addr blk wen dout|rd a 0 a 1 a 2 d 0 d 1 t cyc t ckh t ckl t as t ah t bks t ens t enh t doh2 t ckq2 t bkh d n
proasic3e flash family fpgas revision 13 2-73 figure 2-43 ? ram write, output retained. applic able to both ram4k9 and ram512x18. figure 2-44 ? ram write, output as write data. applicable to ram4k9 only. t cyc t ckh t ckl a 0 a 1 a 2 di 0 di 1 t as t ah t bks t ens t enh t ds t dh clk blk wen [r|w]addr din|wd d n dout|rd t bkh d 2 t cyc t ckh t ckl a 0 a 1 a 2 di 0 di 1 t as t ah t bks t ens t ds t dh clk blk wen addr din t bkh dout (pass-through) di 1 d n di 0 dout (pipelined) di 0 di 1 d n di 2
proasic3e dc and switching characteristics 2-74 revision 13 figure 2-45 ? ram reset. applicable to both ram4k9 and ram512x18. clk reset dout|rd d n t cyc t ckh t ckl t rstbq d m
proasic3e flash family fpgas revision 13 2-75 timing characteristics table 2-99 ? ram4k9 commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description ?2 ?1 std. units t as address setup time 0.25 0.28 0.33 ns t ah address hold time 0.00 0.00 0.00 ns t ens ren, wen setup time 0.14 0.16 0.19 ns t enh ren, wen hold time 0.10 0.11 0.13 ns t bks blk setup time 0.23 0.27 0.31 ns t bkh blk hold time 0.02 0.02 0.02 ns t ds input data (din) setup time 0.18 0.21 0.25 ns t dh input data (din) hold time 0.00 0.00 0.00 ns t ckq1 clock high to new data valid on dout (out put retained, wmode = 0) 1.79 2.03 2.39 ns clock high to new data valid on dout (flo w-through, wmode = 1) 2.36 2.68 3.15 ns t ckq2 clock high to new data valid on dout (pipelined) 0.89 1.02 1.20 ns t c2cwwl 1 address collision clk-to-clk delay for reliable write after write on same address?applicable to closing edge 0.33 0.28 0.25 ns t c2cwwh 1 address collision clk-to-clk delay for reliable write after write on same address?applicable to rising edge 0.30 0.26 0.23 ns t c2crwh 1 address collision clk-to-clk delay for reliable read access after write on same address?applicable to opening edge 0.45 0.38 0.34 ns t c2cwrh 1 address collision clk-to-clk delay for reliable write access after read on same address? applicable to opening edge 0.49 0.42 0.37 ns t rstbq reset low to data out low on do (flow-through) 0.92 1.05 1.23 ns reset low to data out low on do (pipelined) 0.92 1.05 1.23 ns t remrstb reset removal 0.29 0.33 0.38 ns t recrstb reset recovery 1.50 1.71 2.01 ns t mpwrstb reset minimum pulse width 0.21 0.24 0.29 ns t cyc clock cycle time 3.23 3.68 4.32 ns f max maximum frequency 310 272 231 mhz notes: 1. for more information, refer to the application note simultaneous read-write operations in dual-port sram for flash- based csocs and fpgas . 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e dc and switching characteristics 2-76 revision 13 table 2-100 ? ram512x18 commercial-case conditions: t j = 70c, worst-case vcc = 1.425 v parameter description ?2 ?1 std. units t as address setup time 0.25 0.28 0.33 ns t ah address hold time 0.00 0.00 0.00 ns t ens ren, wen setup time 0.18 0.20 0.24 ns t enh ren, wen hold time 0.06 0.07 0.08 ns t ds input data (wd) setup time 0.18 0.21 0.25 ns t dh input data (wd) hold time 0.00 0.00 0.00 ns t ckq1 clock high to new data valid on rd (output retained) 2.16 2.46 2.89 ns t ckq2 clock high to new data valid on rd (pipelined) 0.90 1.02 1.20 ns t c2crwh 1 address collision clk-to-clk delay for reliable read access after write on same address?applicable to opening edge 0.50 0.43 0.38 ns t c2cwrh 1 address collision clk-to-clk delay for reliable write access after read on same address? applicable to opening edge 0.59 0.50 0.44 ns t rstbq reset low to data out low on rd (flow-through) 0.92 1.05 1.23 ns reset low to data out low on rd (pipelined) 0.92 1.05 1.23 ns t remrstb reset removal 0.29 0.33 0.38 ns t recrstb reset recovery 1.50 1.71 2.01 ns t mpwrstb reset minimum pulse width 0.21 0.24 0.29 ns t cyc clock cycle time 3.23 3.68 4.32 ns f max maximum frequency 310 272 231 mhz notes: 1. for more information, refer to the application note simultaneous read-write operations in dual-port sram for flash- based csocs and fpgas . 2. for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e flash family fpgas revision 13 2-77 fifo figure 2-46 ? fifo model fifo4k18 rw2 rd17 rw1 rd16 rw0 ww2 ww1 ww0 rd0 estop fstop full afull empty afval11 aempty afval10 afval0 aeval11 aeval10 aeval0 ren rblk rclk wen wblk wclk rpipe wd17 wd16 wd0 reset
proasic3e dc and switching characteristics 2-78 revision 13 timing waveforms figure 2-47 ? fifo read figure 2-48 ? fifo write t ens t enh t ckq1 t ckq2 t cyc d 0 d 1 d n d n d 0 d 2 d 1 t bks t bkh rclk rblk ren rd (flow-through) rd (pipelined) wclk wen wd t ens t enh t ds t dh t cyc di 0 di 1 t bkh t bks wblk
proasic3e flash family fpgas revision 13 2-79 figure 2-49 ? fifo reset figure 2-50 ? fifo empty flag and aempty flag assertion match (a 0 ) t mpwrstb t rstfg t rstck t rstaf rclk/ wclk reset empty aempty wa/ra (address counter) t rstfg t rstaf full afull rclk no match no match dist = aef_th match (empty) t ckaf t rckef empty aempty t cyc wa/ra (address counter)
proasic3e dc and switching characteristics 2-80 revision 13 figure 2-51 ? fifo full flag and afull flag assertion figure 2-52 ? fifo empty flag and aempty flag deassertion figure 2-53 ? fifo full flag and afull flag deassertion no match no match dist = aff_th match (full) t ckaf t wckff t cyc wclk full afull wa/ra (address counter) wclk wa/ra (address counter) match (empty) no match no match no match dist = aef_th + 1 no match rclk empty 1st rising edge after 1st write 2nd rising edge after 1st write t rckef t ckaf aempty dist = aff_th ? 1 match (full) no match no match no match no match t wckf t ckaf 1st rising edge after 1st read 1st rising edge after 2nd read rclk wa/ra (address counter) wclk full afull
proasic3e flash family fpgas revision 13 2-81 timing characteristics table 2-101 ? fifo commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description ?2 ?1 std. units t ens ren, wen setup time 1.38 1.57 1.84 ns t enh ren, wen hold time 0.02 0.02 0.02 ns t bks blk setup time 0.19 0.22 0.26 ns t bkh blk hold time 0.00 0.00 0.00 ns t ds input data (wd) setup time 0.18 0.21 0.25 ns t dh input data (wd) hold time 0.00 0.00 0.00 ns t ckq1 clock high to new data valid on rd (pass-through) 2.36 2.68 3.15 ns t ckq2 clock high to new data valid on rd (pipelined) 0.89 1.02 1.20 ns t rckef rclk high to empty flag valid 1.72 1.96 2.30 ns t wckff wclk high to full flag valid 1.63 1.86 2.18 ns t ckaf clock high to almost empty/fu ll flag valid 6.19 7.05 8.29 ns t rstfg reset low to empty/full flag valid 1.69 1.93 2.27 ns t rstaf reset low to almost empty/full flag valid 6.13 6.98 8.20 ns t rstbq reset low to data out low on rd (pass-through) 0.92 1.05 1.23 ns reset low to data out low on rd (pipelined) 0.92 1.05 1.23 ns t remrstb reset removal 0.29 0.33 0.38 ns t recrstb reset recovery 1.50 1.71 2.01 ns t mpwrstb reset minimum pulse width 0.21 0.24 0.29 ns t cyc clock cycle time 3.23 3.68 4.32 ns f max maximum frequency 310 272 231 mhz note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
proasic3e dc and switching characteristics 2-82 revision 13 embedded flashrom characteristics timing characteristics jtag 1532 characteristics jtag timing delays do not include jtag i/os. to obtai n complete jtag timing, add i/o buffer delays to the corresponding standard selected; refer to the i/o timing characteristics in the "user i/o characteristics" section on page 2-12 for more details. timing characteristics figure 2-54 ? timing diagram a 0 a 1 t su t hold t su t hold t su t hold t ckq2 t ckq2 t ckq2 clk address data d 0 d 0 d 1 table 2-102 ? embedded flashrom access time parameter description ?2 ?1 std. units t su address setup time 0.53 0.61 0.71 ns t hold address hold time 0.00 0.00 0.00 ns t ck2q clock to out 16.23 18.48 21.73 ns f max maximum clock frequency 15 15 15 mhz table 2-103 ? jtag 1532 commercial-case conditions: t j = 70c, vcc = 1.425 v parameter description ?2 ?1 std. units t disu test data input setup time 0.50 0.57 0.67 ns t dihd test data input hold time 1.00 1.13 1.33 ns t tmssu test mode select setup time 0.50 0.57 0.67 ns t tmdhd test mode select hold time 1.00 1.13 1.33 ns t tck2q clock to q (data out) 6.00 6.80 8.00 ns t rstb2q reset to q (data out) 20.00 22.67 26.67 ns f tckmax tck maximum frequency 25.00 22.00 19.00 mhz t trstrem resetb removal time 0.00 0.00 0.00 ns t trstrec resetb recovery time 0.20 0.23 0.27 ns t trstmpw resetb minimum pulse tbd tbd tbd ns note: for specific junction temperature and voltage supply levels, refer to table 2-6 on page 2-5 for derating values.
revision 13 3-1 3 ? pin descriptions and packaging supply pins gnd ground ground supply voltage to the core, i/o outputs, and i/o logic. gndq ground (quiet) quiet ground supply voltage to input buffers of i/o banks. within the package, the gndq plane is decoupled from the simultaneous switching noise orig inated from the output buffer ground domain. this minimizes the noise transfer within the package and im proves input signal integrity. gndq must always be connected to gnd on the board. vcc core supply voltage supply voltage to the fpga core, nominally 1.5 v. v cc is required for powering the jtag state machine in addition to vjtag. even when a device is in by pass mode in a jtag chain of interconnected devices, both vcc and vjtag must remain powered to allow jtag signals to pass through the device. vccibx i/o supply voltage supply voltage to the bank's i/o output buffers and i/o logic. bx is the i/o bank number. there are up to eight i/o banks on low power flash devices plus a dedicated vjtag bank. each bank can have a separate vcci connection. all i/os in a bank will run off the same vccibx supply. vcci can be 1.5 v, 1.8 v, 2.5 v, or 3.3 v, nominal voltage. unused i/o ba nks should have their corresponding vcci pins tied to gnd. vmvx i/o supply voltage (quiet) quiet supply voltage to the input buffers of each i/o bank. x is the bank number. within the package, the vmv plane biases the input stage of the i/os in the i/o banks. this minimizes the noise transfer within the package and improves input signal integrity. ea ch bank must have at least one vmv connection, and no vmv should be left unconnected. all i/os in a bank run off the same vmvx supply. vmv is used to provide a quiet supply voltage to the input buffers of each i/o bank. vmvx can be 1.5 v, 1.8 v, 2.5 v, or 3.3 v, nominal voltage. unused i/o banks should have their corresponding vmv pins tied to gnd. vmv and vcci should be at the same voltage within a gi ven i/o bank. used vmv pins must be connected to the corresponding vcci pins of the same bank (i .e., vmv0 to vccib0, vmv1 to vccib1, etc.). vccpla/b/c/d/e/f pll supply voltage supply voltage to analog pll, nominally 1.5 v. when the plls are not used, the plac e-and-route tool automatically di sables the unused plls to lower power consumption. the user should tie unused v ccplx and vcomplx pins to ground. microsemi recommends tying vccplx to vcc and using proper f iltering circuits to decouple vcc noise from the plls. refer to the pll power supply decoupling section of the "clock conditioning circuits in low power flash devices and mixed signal fpgas" chapter of the proasic3e fpga fabr ic user?s guide for a complete board solution for the pll analog power supply and ground. there are six vccplx pins on proasic3e devices. vcompla/b/c/d/e/f pll ground ground to analog pll power supplies. when the plls are not used, the place-and-route tool automatically disables the unused plls to lower power consumption. the user should tie unused vccplx and vcomplx pins to ground. there are six vcompl pins (pll ground) on proasic3e devices. vjtag jtag supply voltage low power flash devices have a separate bank for the dedicated jtag pins. the jtag pins can be run at any voltage from 1.5 v to 3.3 v (nominal). isol ating the jtag power supply in a separate i/o bank gives greater flexibility in supply selection and si mplifies power supply and pcb design. if the jtag interface is neither used nor planned for use, the vj tag pin together with the trst pin could be tied to gnd. it should be noted that vcc is required to be powered for jtag operation; vjtag alone is
pin descriptions and packaging 3-2 revision 13 insufficient. if a device is in a jtag chain of in terconnected boards, the board containing the device can be powered down, provided both vjtag and vcc to th e part remain powered; otherwise, jtag signals will not be able to transition the device, even in bypass mode. microsemi recommends that vpump and vjtag pow er supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail. vpump programming supply voltage for programming, vpump should be 3.3 v nominal. during normal device operation, vpump can be left floating or can be tied (pulled up) to any voltage between 0 v and the vpump maximum. programming power supply voltage (vpump) range is listed in the datasheet. when the vpump pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry. for proper programming, 0.01 f and 0.33 f capacitors (both rated at 16 v) are to be connected in parallel across vpump and gnd, and positioned as close to the fpga pins as possible. microsemi recommends that vpump and vjtag pow er supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail. user-defined supply pins vref i/o voltage reference reference voltage for i/o minibanks. vref pins are configured by the user from regular i/os, and any i/o in a bank, except jtag i/os, can be designated the voltage reference i/o. only certain i/o standards require a voltage reference?hstl (i) and (ii), sstl2 (i) and (ii), sstl3 (i) and (ii), and gtl/gtl+. one vref pin can support the number of i/os available in its minibank. user pins i/o user input/output the i/o pin functions as an input, output, tristate, or bi directional buffer. input and output signal levels are compatible with the i/o standard selected. during programming, i/os become tristated and weakly pulled up to vcci. with vcci, vmv, and vcc supplies continuously powered up, when the device tr ansitions from programming to operating mode, the i/os are instantly configured to the desired user configuration. unused i/os are configured as follows: ? output buffer is disabled (with tristate value of high impedance) ? input buffer is disabled (with tristate value of high impedance) ? weak pull-up is programmed gl globals gl i/os have access to certain clock conditioning circuitry (and the pll) and/or have direct access to the global network (spines). additionally, the global i/os can be used as regular i/os, since they have identical capabilities. unused gl pins are configured as inputs with pull-up resistors. see more detailed descriptions of global i/o connectivity in the "clock conditioning circuits in low power flash devices and mixed signal fpgas" chapter of the proasic3e fpga fabric user?s guide . all inputs labeled gc/gf are direct inputs into the quadr ant clocks. for example, if gaa0 is used for an input, gaa1 and gaa2 are no longer available fo r input to the quadrant globals. all inputs labeled gc/gf are direct inputs into the ch ip-level globals, and the rest are connected to the quadrant globals. the inputs to the global network are multiplexed, and only one input can be used as a global input. refer to the i/o structure section of the proasic3e fpga fabric user?s guide for an explanation of the naming of global pins.
proasic3e flash family fpgas revision 13 3-3 jtag pins low power flash devices have a separate bank for the dedicated jtag pins. the jtag pins can be run at any voltage from 1.5 v to 3.3 v (nominal). vc c must also be powered for the jtag state machine to operate, even if the device is in bypass mode; vjtag alone is insufficient. both vjtag and vcc to the part must be supplied to allow jtag signals to transition the device. isolating the jtag power supply in a separate i/o bank gives greater flexibility in s upply selection and simplifies power supply and pcb design. if the jtag interface is neither used nor planned for use, the vjtag pin together with the trst pin could be tied to gnd. tck test clock test clock input for jtag boundary scan, isp, and uj tag. the tck pin does not have an internal pull- up/-down resistor. if jtag is not used, microsemi recommends tying off tck to gnd through a resistor placed close to the fpga pin. this prevents jtag operation in case tms enters an undesired state. note that to operate at all vjtag voltages, 500 w to 1 k ? will satisfy the requirements. refer to table 3-1 for more information. tdi test data input serial input for jtag boundary scan, isp, and ujtag us age. there is an internal weak pull-up resistor on the tdi pin. tdo test data output serial output for jtag boundary scan, isp, and ujtag usage. tms test mode select the tms pin controls the use of the ieee 1532 boundar y scan pins (tck, tdi, tdo, trst). there is an internal weak pull-up resistor on the tms pin. trst boundary scan reset pin the trst pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. there is an internal weak pull-up resistor on the trst pin. if jtag is not used, an external pull- down resistor could be included to ensure the test access port (tap) is held in reset mode. the resistor values must be chosen from ta b l e 3 - 1 and must satisfy the parallel re sistance value requirement. the values in ta b l e 3 - 1 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a jtag chain. in critical applications, an upset in the jtag circui t could allow entrance to an undesired jtag state. in such cases, microsemi recommends tying off trst to gnd through a resistor placed close to the fpga pin. note that to operate at all vjtag voltages, 500 ? to 1 k ? will satisfy the requirements. table 3-1 ? recommended tie-off values for the tck and trst pins vjtag tie-off resistance vjtag at 3.3 v 200 ? to 1 k ? vjtag at 2.5 v 200 ? to 1 k ? vjtag at 1.8 v 500 ? to 1 k ? vjtag at 1.5 v 500 ? to 1 k ? notes: 1. equivalent parallel resistance if more than one device is on the jtag chain 2. the tck pin can be pulled up/down. 3. the trst pin is pulled down.
pin descriptions and packaging 3-4 revision 13 special function pins nc no connect this pin is not connected to circuitry within the devic e. these pins can be driven to any voltage or can be left floating with no effect on the operation of the device. dc do not connect this pin should not be connected to any signals on the pcb. these pins should be left unconnected. packaging semiconductor technology is constantly shrinking in size while growing in capability and functional integration. to enable next-generation silicon tech nologies, semiconductor packages have also evolved to provide improved performance and flexibility. microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability an d performance. microsemi ic packaging technology efficiently supports high-density fpgas with large-pin- count ball grid arrays (bga s), but is also flexible enough to accommodate stringent form factor requi rements for chip scale packaging (csp). in addition, microsemi offers a variety of packages designed to meet your most dema nding application and economic requirements for today's embedded and mobile systems. related documents user?s guides proasic3e fpga fabric user?s guide http://www.microsemi.com/soc/documents/pa3e_ug.pdf packaging the following documents provide packaging information and device selection for low power flash devices. product catalog http://www.microsemi.com/soc /documents/prodcat_pib.pdf lists devices currently recommended for new designs and the packages available for each member of the family. use this document or the datasheet tables to determine the best package for your design, and which package drawing to use. package mechanical drawings http://www.microsemi.com/soc /documents/pckgmechdrwngs.pdf this document contains the package mechanical dr awings for all packages currently or previously supplied by microsemi. use the bookmarks to na vigate to the package mechanical drawings. additional packaging materials: http://www.microsemi.com/soc/pr oducts/solutions/package/docs.aspx .
revision 13 4-1 4 ? package pin assignments pq208 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/pr oducts/solutions/package/docs.aspx . note: this is the top view of the package. 208-pin pqfp 1 208
package pin assignments 4-2 revision 13 pq208 pin number a3pe600 function 1gnd 2 gndq 3vmv7 4 gab2/io133psb7v1 5 gaa2/io134pdb7v1 6 io134ndb7v1 7 gac2/io132pdb7v1 8 io132ndb7v1 9 io130pdb7v1 10 io130ndb7v1 11 io127pdb7v1 12 io127ndb7v1 13 io126pdb7v0 14 io126ndb7v0 15 io124psb7v0 16 vcc 17 gnd 18 vccib7 19 io122ppb7v0 20 io121psb7v0 21 io122npb7v0 22 gfc1/io120psb7v0 23 gfb1/io119pdb7v0 24 gfb0/io119ndb7v0 25 vcomplf 26 gfa0/io118npb6v1 27 vccplf 28 gfa1/io118ppb6v1 29 gnd 30 gfa2/io117pdb6v1 31 io117ndb6v1 32 gfb2/io116ppb6v1 33 gfc2/io115ppb6v1 34 io116npb6v1 35 io115npb6v1 36 vcc 37 io112pdb6v1 38 io112ndb6v1 39 io108psb6v0 40 vccib6 41 gnd 42 io106pdb6v0 43 io106ndb6v0 44 gec1/io104pdb6v0 45 gec0/io104ndb6v 0 46 geb1/io103ppb6v0 47 gea1/io102ppb6v0 48 geb0/io103npb6v0 49 gea0/io102npb6v0 50 vmv6 51 gndq 52 gnd 53 vmv5 54 gndq 55 io101ndb5v2 56 gea2/io101pdb5v2 57 io100ndb5v2 58 geb2/io100pdb5v2 59 io99ndb5v2 60 gec2/io99pdb5v2 61 io98psb5v2 62 vccib5 63 io96psb5v2 64 io94ndb5v1 65 gnd 66 io94pdb5v1 67 io92ndb5v1 68 io92pdb5v1 69 io88ndb5v0 70 io88pdb5v0 71 vcc pq208 pin number a3pe600 function 72 vccib5 73 io85npb5v0 74 io84npb5v0 75 io85ppb5v0 76 io84ppb5v0 77 io83npb5v0 78 io82npb5v0 79 io83ppb5v0 80 io82ppb5v0 81 gnd 82 io80ndb4v1 83 io80pdb4v1 84 io79npb4v1 85 io78npb4v1 86 io79ppb4v1 87 io78ppb4v1 88 vcc 89 vccib4 90 io76ndb4v1 91 io76pdb4v1 92 io72ndb4v0 93 io72pdb4v0 94 io70ndb4v0 95 gdc2/io70pdb4v0 96 io68ndb4v0 97 gnd 98 gda2/io68pdb4v0 99 gdb2/io69psb4v0 100 gndq 101 tck 102 tdi 103 tms 104 vmv4 105 gnd 106 vpump 107 gndq pq208 pin number a3pe600 function
proasic3e flash family fpgas revision 13 4-3 108 tdo 109 trst 110 vjtag 111 vmv3 112 gda0/io67npb3v1 113 gdb0/io66npb3v1 114 gda1/io67ppb3v1 115 gdb1/io66ppb3v1 116 gdc0/io65ndb3v1 117 gdc1/io65pdb3v1 118 io62ndb3v1 119 io62pdb3v1 120 io58ndb3v0 121 io58pdb3v0 122 gnd 123 vccib3 124 gcc2/io55psb3v0 125 gcb2/io54psb3v0 126 nc 127 io53ndb3v0 128 gca2/io53pdb3v0 129 gca1/io52ppb3v0 130 gnd 131 vccplc 132 gca0/io52npb3v0 133 vcomplc 134 gcb0/io51ndb2v1 135 gcb1/io51pdb2v1 136 gcc1/io50psb2v1 137 io49ndb2v1 138 io49pdb2v1 139 io48psb2v1 140 vccib2 141 gnd 142 vcc 143 io47ndb2v1 pq208 pin number a3pe600 function 144 io47pdb2v1 145 io44ndb2v1 146 io44pdb2v1 147 io43ndb2v0 148 io43pdb2v0 149 io40ndb2v0 150 io40pdb2v0 151 gbc2/io38psb2v0 152 gba2/io36psb2v0 153 gbb2/io37psb2v0 154 vmv2 155 gndq 156 gnd 157 vmv1 158 gndq 159 gba1/io35pdb1v1 160 gba0/io35ndb1v1 161 gbb1/io34pdb1v1 162 gnd 163 gbb0/io34ndb1v1 164 gbc1/io33pdb1v1 165 gbc0/io33ndb1v1 166 io31pdb1v1 167 io31ndb1v1 168 io27pdb1v0 169 io27ndb1v0 170 vccib1 171 vcc 172 io23ppb1v0 173 io22psb1v0 174 io23npb1v0 175 io21pdb1v0 176 io21ndb1v0 177 io19ppb0v2 178 gnd 179 io18ppb0v2 pq208 pin number a3pe600 function 180 io19npb0v2 181 io18npb0v2 182 io17ppb0v2 183 io16ppb0v2 184 io17npb0v2 185 io16npb0v2 186 vccib0 187 vcc 188 io15pdb0v2 189 io15ndb0v2 190 io13pdb0v2 191 io13ndb0v2 192 io11psb0v1 193 io09pdb0v1 194 io09ndb0v1 195 gnd 196 io07pdb0v1 197 io07ndb0v1 198 io05pdb0v0 199 io05ndb0v0 200 vccib0 201 gac1/io02pdb0v0 202 gac0/io02ndb0v0 203 gab1/io01pdb0v0 204 gab0/io01ndb0v0 205 gaa1/io00pdb0v0 206 gaa0/io00ndb0v0 207 gndq 208 vmv0 pq208 pin number a3pe600 function
package pin assignments 4-4 revision 13 pq208 pin number a3pe1500 function 1gnd 2 gndq 3vmv7 4 gab2/io220psb7v3 5 gaa2/io221pdb7v3 6 io221ndb7v3 7 gac2/io219pdb7v3 8 io219ndb7v3 9 io215pdb7v3 10 io215ndb7v3 11 io212pdb7v2 12 io212ndb7v2 13 io208pdb7v2 14 io208ndb7v2 15 io204psb7v1 16 vcc 17 gnd 18 vccib7 19 io200pdb7v1 20 io200ndb7v1 21 io196psb7v0 22 gfc1/io192psb7v0 23 gfb1/io191pdb7v0 24 gfb0/io191ndb7v0 25 vcomplf 26 gfa0/io190npb6v2 27 vccplf 28 gfa1/io190ppb6v2 29 gnd 30 gfa2/io189pdb6v2 31 io189ndb6v2 32 gfb2/io188ppb6v2 33 gfc2/io187ppb6v2 34 io188npb6v2 35 io187npb6v2 36 vcc 37 io184pdb6v2 38 io184ndb6v2 39 io180psb6v1 40 vccib6 41 gnd 42 io176pdb6v1 43 io176ndb6v1 44 gec1/io169pdb6v0 45 gec0/io169ndb6v0 46 geb1/io168ppb6v0 47 gea1/io167ppb6v0 48 geb0/io168npb6v0 49 gea0/io167npb6v0 50 vmv6 51 gndq 52 gnd 53 vmv5 54 gndq 55 io166ndb5v3 56 gea2/io166pdb5v3 57 io165ndb5v3 58 geb2/io165pdb5v3 59 io164ndb5v3 60 gec2/io164pdb5v3 61 io163psb5v3 62 vccib5 63 io161psb5v3 64 io157ndb5v2 65 gnd 66 io157pdb5v2 67 io153ndb5v2 68 io153pdb5v2 69 io149ndb5v1 70 io149pdb5v1 71 vcc 72 vccib5 pq208 pin number a3pe1500 function 73 io145ndb5v1 74 io145pdb5v1 75 io143ndb5v1 76 io143pdb5v1 77 io137ndb5v0 78 io137pdb5v0 79 io135ndb5v0 80 io135pdb5v0 81 gnd 82 io131ndb4v2 83 io131pdb4v2 84 io129ndb4v2 85 io129pdb4v2 86 io127ndb4v2 87 io127pdb4v2 88 vcc 89 vccib4 90 io121ndb4v1 91 io121pdb4v1 92 io119ndb4v1 93 io119pdb4v1 94 io113ndb4v0 95 gdc2/io113pdb4v0 96 io112ndb4v0 97 gnd 98 gdb2/io112pdb4v0 99 gda2/io111psb4v0 100 gndq 101 tck 102 tdi 103 tms 104 vmv4 105 gnd 106 vpump 107 gndq 108 tdo pq208 pin number a3pe1500 function
proasic3e flash family fpgas revision 13 4-5 109 trst 110 vjtag 111 vmv3 112 gda0/io110npb3v2 113 gdb0/io109npb3v2 114 gda1/io110ppb3v2 115 gdb1/io109ppb3v2 116 gdc0/io108ndb3v2 117 gdc1/io108pdb3v2 118 io105ndb3v2 119 io105pdb3v2 120 io101ndb3v1 121 io101pdb3v1 122 gnd 123 vccib3 124 gcc2/io90psb3v0 125 gcb2/io89psb3v0 126 nc 127 io88ndb3v0 128 gca2/io88pdb3v0 129 gca1/io87ppb3v0 130 gnd 131 vccplc 132 gca0/io87npb3v0 133 vcomplc 134 gcb0/io86ndb2v3 135 gcb1/io86pdb2v3 136 gcc1/io85psb2v3 137 io83ndb2v3 138 io83pdb2v3 139 io81psb2v3 140 vccib2 141 gnd 142 vcc 143 io73ndb2v2 144 io73pdb2v2 pq208 pin number a3pe1500 function 145 io71ndb2v2 146 io71pdb2v2 147 io67ndb2v1 148 io67pdb2v1 149 io65ndb2v1 150 io65pdb2v1 151 gbc2/io60psb2v0 152 gba2/io58psb2v0 153 gbb2/io59psb2v0 154 vmv2 155 gndq 156 gnd 157 vmv1 158 gndq 159 gba1/io57pdb1v3 160 gba0/io57ndb1v3 161 gbb1/io56pdb1v3 162 gnd 163 gbb0/io56ndb1v3 164 gbc1/io55pdb1v3 165 gbc0/io55ndb1v3 166 io51pdb1v2 167 io51ndb1v2 168 io47pdb1v1 169 io47ndb1v1 170 vccib1 171 vcc 172 io43psb1v1 173 io41pdb1v1 174 io41ndb1v1 175 io35pdb1v0 176 io35ndb1v0 177 io31pdb0v3 178 gnd 179 io31ndb0v3 180 io29pdb0v3 pq208 pin number a3pe1500 function 181 io29ndb0v3 182 io27pdb0v3 183 io27ndb0v3 184 io23pdb0v2 185 io23ndb0v2 186 vccib0 187 vcc 188 io18pdb0v2 189 io18ndb0v2 190 io15pdb0v1 191 io15ndb0v1 192 io12psb0v1 193 io11pdb0v1 194 io11ndb0v1 195 gnd 196 io08pdb0v1 197 io08ndb0v1 198 io05pdb0v0 199 io05ndb0v0 200 vccib0 201 gac1/io02pdb0v0 202 gac0/io02ndb0v0 203 gab1/io01pdb0v0 204 gab0/io01ndb0v0 205 gaa1/io00pdb0v0 206 gaa0/io00ndb0v0 207 gndq 208 vmv0 pq208 pin number a3pe1500 function
package pin assignments 4-6 revision 13 pq208 pin number a3pe3000 function 1gnd 2 gndq 3vmv7 4 gab2/io308psb7v4 5 gaa2/io309pdb7v4 6 io309ndb7v4 7 gac2/io307pdb7v4 8 io307ndb7v4 9 io303pdb7v3 10 io303ndb7v3 11 io299pdb7v3 12 io299ndb7v3 13 io295pdb7v2 14 io295ndb7v2 15 io291psb7v2 16 vcc 17 gnd 18 vccib7 19 io285pdb7v1 20 io285ndb7v1 21 io279psb7v0 22 gfc1/io275psb7v0 23 gfb1/io274pdb7v0 24 gfb0/io274ndb7v0 25 vcomplf 26 gfa0/io273npb6v4 27 vccplf 28 gfa1/io273ppb6v4 29 gnd 30 gfa2/io272pdb6v4 31 io272ndb6v4 32 gfb2/io271ppb6v4 33 gfc2/io270ppb6v4 34 io271npb6v4 35 io270npb6v4 36 vcc 37 io252pdb6v2 38 io252ndb6v2 39 io248psb6v1 40 vccib6 41 gnd 42 io244pdb6v1 43 io244ndb6v1 44 gec1/io236pdb6v0 45 gec0/io236ndb6v0 46 geb1/io235ppb6v0 47 gea1/io234ppb6v0 48 geb0/io235npb6v0 49 gea0/io234npb6v0 50 vmv6 51 gndq 52 gnd 53 vmv5 54 gndq 55 io233ndb5v4 56 gea2/io233pdb5v4 57 io232ndb5v4 58 geb2/io232pdb5v4 59 io231ndb5v4 60 gec2/io231pdb5v4 61 io230psb5v4 62 vccib5 63 io218ndb5v3 64 io218pdb5v3 65 gnd 66 io214psb5v2 67 io212ndb5v2 68 io212pdb5v2 69 io208ndb5v1 70 io208pdb5v1 71 vcc 72 vccib5 73 io202ndb5v1 74 io202pdb5v1 75 io198ndb5v0 76 io198pdb5v0 77 io197ndb5v0 78 io197pdb5v0 pq208 pin number a3pe3000 function 79 io194ndb5v0 80 io194pdb5v0 81 gnd 82 io184ndb4v3 83 io184pdb4v3 84 io180ndb4v3 85 io180pdb4v3 86 io176ndb4v2 87 io176pdb4v2 88 vcc 89 vccib4 90 io170ndb4v2 91 io170pdb4v2 92 io166ndb4v1 93 io166pdb4v1 94 io156ndb4v0 95 gdc2/io156pdb4v0 96 io154npb4v0 97 gnd 98 gdb2/io155psb4v0 99 gda2/io154ppb4v0 100 gndq 101 tck 102 tdi 103 tms 104 vmv4 105 gnd 106 vpump 107 gndq 108 tdo 109 trst 110 vjtag 111 vmv3 112 gda0/io153npb3v4 113 gdb0/io152npb3v4 114 gda1/io153ppb3v4 115 gdb1/io152ppb3v4 116 gdc0/io151ndb3v4 117 gdc1/io151pdb3v4 pq208 pin number a3pe3000 function
proasic3e flash family fpgas revision 13 4-7 118 io134ndb3v2 119 io134pdb3v2 120 io132ndb3v2 121 io132pdb3v2 122 gnd 123 vccib3 124 gcc2/io117psb3v0 125 gcb2/io116psb3v0 126 nc 127 io115ndb3v0 128 gca2/io115pdb3v0 129 gca1/io114ppb3v0 130 gnd 131 vccplc 132 gca0/io114npb3v0 133 vcomplc 134 gcb0/io113ndb2v3 135 gcb1/io113pdb2v3 136 gcc1/io112psb2v3 137 io110ndb2v3 138 io110pdb2v3 139 io106psb2v3 140 vccib2 141 gnd 142 vcc 143 io99ndb2v2 144 io99pdb2v2 145 io96ndb2v1 146 io96pdb2v1 147 io91ndb2v1 148 io91pdb2v1 149 io88ndb2v0 150 io88pdb2v0 151 gbc2/io84psb2v0 152 gba2/io82psb2v0 153 gbb2/io83psb2v0 154 vmv2 155 gndq 156 gnd pq208 pin number a3pe3000 function 157 vmv1 158 gndq 159 gba1/io81pdb1v4 160 gba0/io81ndb1v4 161 gbb1/io80pdb1v4 162 gnd 163 gbb0/io80ndb1v4 164 gbc1/io79pdb1v4 165 gbc0/io79ndb1v4 166 io74pdb1v4 167 io74ndb1v4 168 io70pdb1v3 169 io70ndb1v3 170 vccib1 171 vcc 172 io56psb1v1 173 io55pdb1v1 174 io55ndb1v1 175 io54pdb1v1 176 io54ndb1v1 177 io40pdb0v4 178 gnd 179 io40ndb0v4 180 io37pdb0v4 181 io37ndb0v4 182 io35pdb0v4 183 io35ndb0v4 184 io32pdb0v3 185 io32ndb0v3 186 vccib0 187 vcc 188 io28pdb0v3 189 io28ndb0v3 190 io24pdb0v2 191 io24ndb0v2 192 io21psb0v2 193 io16pdb0v1 194 io16ndb0v1 195 gnd pq208 pin number a3pe3000 function 196 io11pdb0v1 197 io11ndb0v1 198 io08pdb0v0 199 io08ndb0v0 200 vccib0 201 gac1/io02pdb0v0 202 gac0/io02ndb0v0 203 gab1/io01pdb0v0 204 gab0/io01ndb0v0 205 gaa1/io00pdb0v0 206 gaa0/io00ndb0v0 207 gndq 208 vmv0 pq208 pin number a3pe3000 function
package pin assignments 4-8 revision 13 fg256 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/pr oducts/solutions/package/docs.aspx . note: this is the bottom view of the package. 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 16 c e g j l n r d f h k m p t b a a1 ball pad corner
proasic3e flash family fpgas revision 13 4-9 fg256 pin number a3pe600 function a1 gnd a2 gaa0/io00ndb0v0 a3 gaa1/io00pdb0v0 a4 gab0/io01ndb0v0 a5 io05pdb0v0 a6 io10pdb0v1 a7 io12pdb0v2 a8 io16ndb0v2 a9 io23ndb1v0 a10 io23pdb1v0 a11 io28ndb1v1 a12 io28pdb1v1 a13 gbb1/io34pdb1v1 a14 gba0/io35ndb1v1 a15 gba1/io35pdb1v1 a16 gnd b1 gab2/io133pdb7v1 b2 gaa2/io134pdb7v1 b3 gndq b4 gab1/io01pdb0v0 b5 io05ndb0v0 b6 io10ndb0v1 b7 io12ndb0v2 b8 io16pdb0v2 b9 io20ndb1v0 b10 io24ndb1v0 b11 io24pdb1v0 b12 gbc1/io33pdb1v1 b13 gbb0/io34ndb1v1 b14 gndq b15 gba2/io36pdb2v0 b16 io42ndb2v0 c1 io133ndb7v1 c2 io134ndb7v1 c3 vmv7 c4 vccpla c5 gac0/io02ndb0v0 c6 gac1/io02pdb0v0 c7 io15ndb0v2 c8 io15pdb0v2 c9 io20pdb1v0 c10 io25ndb1v0 c11 io27pdb1v0 c12 gbc0/io33ndb1v1 c13 vccplb c14 vmv2 c15 io36ndb2v0 c16 io42pdb2v0 d1 io128pdb7v1 d2 io129pdb7v1 d3 gac2/io132pdb7v1 d4 vcompla d5 gndq d6 io09ndb0v1 d7 io09pdb0v1 d8 io13pdb0v2 d9 io21pdb1v0 d10 io25pdb1v0 d11 io27ndb1v0 d12 gndq d13 vcomplb d14 gbb2/io37pdb2v0 d15 io39pdb2v0 d16 io39ndb2v0 e1 io128ndb7v1 e2 io129ndb7v1 e3 io132ndb7v1 e4 io130pdb7v1 e5 vmv0 e6 vccib0 e7 vccib0 e8 io13ndb0v2 fg256 pin number a3pe600 function e9 io21ndb1v0 e10 vccib1 e11 vccib1 e12 vmv1 e13 gbc2/io38pdb2v0 e14 io37ndb2v0 e15 io41ndb2v0 e16 io41pdb2v0 f1 io124pdb7v0 f2 io125pdb7v0 f3 io126pdb7v0 f4 io130ndb7v1 f5 vccib7 f6 gnd f7 vcc f8 vcc f9 vcc f10 vcc f11 gnd f12 vccib2 f13 io38ndb2v0 f14 io40ndb2v0 f15 io40pdb2v0 f16 io45psb2v1 g1 io124ndb7v0 g2 io125ndb7v0 g3 io126ndb7v0 g4 gfc1/io120ppb7v0 g5 vccib7 g6 vcc g7 gnd g8 gnd g9 gnd g10 gnd g11 vcc g12 vccib2 fg256 pin number a3pe600 function
package pin assignments 4-10 revision 13 g13 gcc1/io50ppb2v1 g14 io44ndb2v1 g15 io44pdb2v1 g16 io49nsb2v1 h1 gfb0/io119npb7v0 h2 gfa0/io118ndb6v1 h3 gfb1/io119ppb7v0 h4 vcomplf h5 gfc0/io120npb7v0 h6 vcc h7 gnd h8 gnd h9 gnd h10 gnd h11 vcc h12 gcc0/io50npb2v1 h13 gcb1/io51ppb2v1 h14 gca0/io52npb3v0 h15 vcomplc h16 gcb0/io51npb2v1 j1 gfa2/io117psb6v1 j2 gfa1/io118pdb6v1 j3 vccplf j4 io116ndb6v1 j5 gfb2/io116pdb6v1 j6 vcc j7 gnd j8 gnd j9 gnd j10 gnd j11 vcc j12 gcb2/io54ppb3v0 j13 gca1/io52ppb3v0 j14 gcc2/io55ppb3v0 j15 vccplc j16 gca2/io53psb3v0 fg256 pin number a3pe600 function k1 gfc2/io115psb6v1 k2 io113ppb6v1 k3 io112pdb6v1 k4 io112ndb6v1 k5 vccib6 k6 vcc k7 gnd k8 gnd k9 gnd k10 gnd k11 vcc k12 vccib3 k13 io54npb3v0 k14 io57npb3v0 k15 io55npb3v0 k16 io57ppb3v0 l1 io113npb6v1 l2 io109ppb6v0 l3 io108pdb6v0 l4 io108ndb6v0 l5 vccib6 l6 gnd l7 vcc l8 vcc l9 vcc l10 vcc l11 gnd l12 vccib3 l13 gdb0/io66npb3v1 l14 io60ndb3v1 l15 io60pdb3v1 l16 io61pdb3v1 m1 io109npb6v0 m2 io106ndb6v0 m3 io106pdb6v0 m4 gec0/io104npb6v0 fg256 pin number a3pe600 function m5 vmv5 m6 vccib5 m7 vccib5 m8 io84ndb5v0 m9 io84pdb5v0 m10 vccib4 m11 vccib4 m12 vmv3 m13 vccpld m14 gdb1/io66ppb3v1 m15 gdc1/io65pdb3v1 m16 io61ndb3v1 n1 io105pdb6v0 n2 io105ndb6v0 n3 gec1/io104ppb6v0 n4 vcomple n5 gndq n6 gea2/io101ppb5v2 n7 io92ndb5v1 n8 io90ndb5v1 n9 io82ndb5v0 n10 io74ndb4v1 n11 io74pdb4v1 n12 gndq n13 vcompld n14 vjtag n15 gdc0/io65ndb3v1 n16 gda1/io67pdb3v1 p1 geb1/io103pdb6v0 p2 geb0/io103ndb6v0 p3 vmv6 p4 vccple p5 io101npb5v2 p6 io95ppb5v1 p7 io92pdb5v1 p8 io90pdb5v1 fg256 pin number a3pe600 function
proasic3e flash family fpgas revision 13 4-11 p9 io82pdb5v0 p10 io76ndb4v1 p11 io76pdb4v1 p12 vmv4 p13 tck p14 vpump p15 trst p16 gda0/io67ndb3v1 r1 gea1/io102pdb6v0 r2 gea0/io102ndb6v0 r3 gndq r4 gec2/io99pdb5v2 r5 io95npb5v1 r6 io91ndb5v1 r7 io91pdb5v1 r8 io83ndb5v0 r9 io83pdb5v0 r10 io77ndb4v1 r11 io77pdb4v1 r12 io69ndb4v0 r13 gdb2/io69pdb4v0 r14 tdi r15 gndq r16 tdo t1 gnd t2 io100ndb5v2 t3 geb2/io100pdb5v2 t4 io99ndb5v2 t5 io88ndb5v0 t6 io88pdb5v0 t7 io89nsb5v0 t8 io80nsb4v1 t9 io81ndb4v1 t10 io81pdb4v1 t11 io70ndb4v0 t12 gdc2/io70pdb4v0 fg256 pin number a3pe600 function t13 io68ndb4v0 t14 gda2/io68pdb4v0 t15 tms t16 gnd fg256 pin number a3pe600 function
package pin assignments 4-12 revision 13 fg324 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/pr oducts/solutions/package/docs.aspx . note: this is the bottom view of the package. 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 16 c e g j l n r d f h k m p t b a 17 18 u v a1 ball pad corner
proasic3e flash family fpgas revision 13 4-13 fg324 pin number a3pe3000 fbga a1 gnd a2 io08ndb0v0 a3 io08pdb0v0 a4 io10ndb0v1 a5 io10pdb0v1 a6 io12pdb0v1 a7 gnd a8 io32ndb0v3 a9 io32pdb0v3 a10 io42ppb1v0 a11 io52npb1v1 a12 gnd a13 io66ndb1v3 a14 io72ndb1v3 a15 io72pdb1v3 a16 io74ndb1v4 a17 io74pdb1v4 a18 gnd b1 io305pdb7v3 b2 gab2/io308pdb7v4 b3 gaa0/io00npb0v0 b4 vccib0 b5 gndq b6 io12ndb0v1 b7 io18ndb0v2 b8 vccib0 b9 io42npb1v0 b10 io44ndb1v0 b11 vccib1 b12 io52ppb1v1 b13 io66pdb1v3 b14 gndq b15 vccib1 b16 gba0/io81ndb1v4 b17 gba1/io81pdb1v4 b18 io88pdb2v0 c1 io305ndb7v3 c2 io308ndb7v4 c3 gaa2/io309ppb7v4 c4 gaa1/io00ppb0v0 c5 vmv0 c6 io14ndb0v1 c7 io18pdb0v2 c8 io40ndb0v4 c9 io40pdb0v4 c10 io44pdb1v0 c11 io56ndb1v1 c12 io64ndb1v2 c13 io64pdb1v2 c14 vmv1 c15 gbc0/io79ndb1v4 c16 gbc1/io79pdb1v4 c17 gbb2/io83ppb2v0 c18 io88ndb2v0 d1 io303pdb7v3 d2 vccib7 d3 gac2/io307ppb7v4 d4 io309npb7v4 d5 gab1/io01ppb0v0 d6 io14pdb0v1 d7 io24ndb0v2 d8 io24pdb0v2 d9 io28pdb0v3 d10 io48ndb1v0 d11 io56pdb1v1 d12 io60ppb1v2 d13 gbb0/io80ndb1v4 d14 gbb1/io80pdb1v4 d15 gba2/io82pdb2v0 d16 io83npb2v0 d17 vccib2 d18 io90pdb2v1 fg324 pin number a3pe3000 fbga e1 io303ndb7v3 e2 gndq e3 vmv7 e4 io307npb7v4 e5 vccpla e6 gab0/io01npb0v0 e7 vccib0 e8 gnd e9 io28ndb0v3 e10 io48pdb1v0 e11 gnd e12 vccib1 e13 io60npb1v2 e14 vccplb e15 io82ndb2v0 e16 vmv2 e17 gndq e18 io90ndb2v1 f1 io299ndb7v3 f2 io299pdb7v3 f3 io295pdb7v2 f4 io295ndb7v2 f5 vcompla f6 io291ppb7v2 f7 gac0/io02ndb0v0 f8 gac1/io02pdb0v0 f9 io26pdb0v3 f10 io34pdb0v4 f11 io58ndb1v2 f12 io58pdb1v2 f13 io94ppb2v1 f14 vcomplb f15 gbc2/io84pdb2v0 f16 io84ndb2v0 f17 io92ndb2v1 f18 io92pdb2v1 fg324 pin number a3pe3000 fbga
package pin assignments 4-14 revision 13 g1 gnd g2 io287pdb7v1 g3 io287ndb7v1 g4 io283ppb7v1 g5 vccib7 g6 io279pdb7v0 g7 io291npb7v2 g8 vcc g9 io26ndb0v3 g10 io34ndb0v4 g11 vcc g12 io94npb2v1 g13 io98pdb2v2 g14 vccib2 g15 gcc0/io112npb2v3 g16 io104pdb2v2 g17 io104ndb2v2 g18 gnd h1 io267pdb6v4 h2 vccib7 h3 io283npb7v1 h4 gfb1/io274ppb7v0 h5 gnd h6 io279ndb7v0 h7 vcc h8 vcc h9 gnd h10 gnd h11 vcc h12 vcc h13 io98ndb2v2 h14 gnd h15 gcb1/io113pdb2v3 h16 gcc1/io112ppb2v3 h17 vccib2 h18 io108pdb2v3 fg324 pin number a3pe3000 fbga j1 io267ndb6v4 j2 gfa0/io273ndb6v4 j3 vcomplf j4 gfa2/io272pdb6v4 j5 gfb0/io274npb7v0 j6 gfc0/io275ndb7v0 j7 gfc1/io275pdb7v0 j8 gnd j9 gnd j10 gnd j11 gnd j12 gca2/io115pdb3v0 j13 gca1/io114pdb3v0 j14 gca0/io114ndb3v0 j15 gcb0/io113ndb2v3 j16 vcomplc j17 io120npb3v0 j18 io108ndb2v3 k1 io263pdb6v3 k2 gfa1/io273pdb6v4 k3 vccplf k4 io272ndb6v4 k5 gfc2/io270ppb6v4 k6 gfb2/io271pdb6v4 k7 io271ndb6v4 k8 gnd k9 gnd k10 gnd k11 gnd k12 io115ndb3v0 k13 gcb2/io116pdb3v0 k14 io116ndb3v0 k15 gcc2/io117pdb3v0 k16 vccplc k17 io124npb3v1 k18 io120ppb3v0 fg324 pin number a3pe3000 fbga l1 io263ndb6v3 l2 vccib6 l3 io259pdb6v3 l4 io259ndb6v3 l5 gnd l6 io270npb6v4 l7 vcc l8 vcc l9 gnd l10 gnd l11 vcc l12 vcc l13 io132pdb3v2 l14 gnd l15 io117ndb3v0 l16 io128npb3v1 l17 vccib3 l18 io124ppb3v1 m1 gnd m2 io255pdb6v2 m3 io255ndb6v2 m4 io251ppb6v2 m5 vccib6 m6 geb0/io235ndb6v0 m7 geb1/io235pdb6v0 m8 vcc m9 io192ppb4v4 m10 io154npb4v0 m11 vcc m12 gda0/io153npb3v4 m13 io132ndb3v2 m14 vccib3 m15 io134ndb3v2 m16 io134pdb3v2 m17 io128ppb3v1 m18 gnd fg324 pin number a3pe3000 fbga
proasic3e flash family fpgas revision 13 4-15 n1 io247ndb6v1 n2 io247pdb6v1 n3 io251npb6v2 n4 gec0/io236ndb6v0 n5 vcomple n6 io212ndb5v2 n7 io212pdb5v2 n8 io192npb4v4 n9 io174pdb4v2 n10 io170pdb4v2 n11 gda2/io154ppb4v0 n12 gdb2/io155ppb4v0 n13 gda1/io153ppb3v4 n14 vcompld n15 gdb0/io152ndb3v4 n16 gdb1/io152pdb3v4 n17 io138ndb3v3 n18 io138pdb3v3 p1 io245pdb6v1 p2 gndq p3 vmv6 p4 gec1/io236pdb6v0 p5 vccple p6 io214pdb5v2 p7 vccib5 p8 gnd p9 io174ndb4v2 p10 io170ndb4v2 p11 gnd p12 vccib4 p13 io155npb4v0 p14 vccpld p15 vjtag p16 gdc0/io151ndb3v4 p17 gdc1/io151pdb3v4 p18 io142pdb3v3 fg324 pin number a3pe3000 fbga r1 io245ndb6v1 r2 vccib6 r3 gea1/io234ppb6v0 r4 io232ndb5v4 r5 geb2/io232pdb5v4 r6 io214ndb5v2 r7 io202pdb5v1 r8 io194pdb5v0 r9 io186pdb4v4 r10 io178pdb4v3 r11 io168nsb4v1 r12 io164pdb4v1 r13 gdc2/io156pdb4v0 r14 tck r15 vpump r16 trst r17 vccib3 r18 io142ndb3v3 t1 io241pdb6v0 t2 gea0/io234npb6v0 t3 io233npb5v4 t4 io231npb5v4 t5 vmv5 t6 io208ndb5v1 t7 io202ndb5v1 t8 io194ndb5v0 t9 io186ndb4v4 t10 io178ndb4v3 t11 io166npb4v1 t12 io164ndb4v1 t13 io156ndb4v0 t14 vmv4 t15 tdi t16 gndq t17 tdo t18 io146pdb3v4 fg324 pin number a3pe3000 fbga u1 io241ndb6v0 u2 gea2/io233ppb5v4 u3 gec2/io231ppb5v4 u4 vccib5 u5 gndq u6 io208pdb5v1 u7 io198ppb5v0 u8 vccib5 u9 io182npb4v3 u10 io180npb4v3 u11 vccib4 u12 io166ppb4v1 u13 io162pdb4v1 u14 gndq u15 vccib4 u16 tms u17 vmv3 u18 io146ndb3v4 v1 gnd v2 io218ndb5v3 v3 io218pdb5v3 v4 io206ndb5v1 v5 io206pdb5v1 v6 io198npb5v0 v7 gnd v8 io190ndb4v4 v9 io190pdb4v4 v10 io182ppb4v3 v11 io180ppb4v3 v12 gnd v13 io162ndb4v1 v14 io160ndb4v0 v15 io160pdb4v0 v16 io158ndb4v0 v17 io158pdb4v0 v18 gnd fg324 pin number a3pe3000 fbga
package pin assignments 4-16 revision 13 fg484 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/pr oducts/solutions/package/docs.aspx . note: this is the bottom view of the package. a b c d e f g h j k l m n p r t u v w y aa ab 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 a1 ball pad corner
proasic3e flash family fpgas revision 13 4-17 fg484 pin number a3pe600 function a1 gnd a2 gnd a3 vccib0 a4 io06ndb0v1 a5 io06pdb0v1 a6 io08ndb0v1 a7 io08pdb0v1 a8 io11pdb0v1 a9 io17pdb0v2 a10 io18ndb0v2 a11 io18pdb0v2 a12 io22pdb1v0 a13 io26pdb1v0 a14 io29ndb1v1 a15 io29pdb1v1 a16 io31ndb1v1 a17 io31pdb1v1 a18 io32ndb1v1 a19 nc a20 vccib1 a21 gnd a22 gnd aa1 gnd aa2 vccib6 aa3 nc aa4 io98pdb5v2 aa5 io96ndb5v2 aa6 io96pdb5v2 aa7 io86ndb5v0 aa8 io86pdb5v0 aa9 io85pdb5v0 aa10 io85ndb5v0 aa11 io78ppb4v1 aa12 io79ndb4v1 aa13 io79pdb4v1 aa14 nc aa15 nc aa16 io71ndb4v0 aa17 io71pdb4v0 aa18 nc aa19 nc aa20 nc aa21 vccib3 aa22 gnd ab1 gnd ab2 gnd ab3 vccib5 ab4 io97ndb5v2 ab5 io97pdb5v2 ab6 io93ndb5v1 ab7 io93pdb5v1 ab8 io87ndb5v0 ab9 io87pdb5v0 ab10 nc ab11 nc ab12 io75ndb4v1 ab13 io75pdb4v1 ab14 io72ndb4v0 ab15 io72pdb4v0 ab16 io73ndb4v0 ab17 io73pdb4v0 ab18 nc ab19 nc ab20 vccib4 ab21 gnd ab22 gnd b1 gnd b2 vccib7 b3 nc b4 io03ndb0v0 b5 io03pdb0v0 b6 io07ndb0v1 fg484 pin number a3pe600 function b7 io07pdb0v1 b8 io11ndb0v1 b9 io17ndb0v2 b10 io14pdb0v2 b11 io19pdb0v2 b12 io22ndb1v0 b13 io26ndb1v0 b14 nc b15 nc b16 io30ndb1v1 b17 io30pdb1v1 b18 io32pdb1v1 b19 nc b20 nc b21 vccib2 b22 gnd c1 vccib7 c2 nc c3 nc c4 nc c5 gnd c6 io04ndb0v0 c7 io04pdb0v0 c8 vcc c9 vcc c10 io14ndb0v2 c11 io19ndb0v2 c12 nc c13 nc c14 vcc c15 vcc c16 nc c17 nc c18 gnd c19 nc c20 nc fg484 pin number a3pe600 function
package pin assignments 4-18 revision 13 c21 nc c22 vccib2 d1 nc d2 nc d3 nc d4 gnd d5 gaa0/io00ndb0v0 d6 gaa1/io00pdb0v0 d7 gab0/io01ndb0v0 d8 io05pdb0v0 d9 io10pdb0v1 d10 io12pdb0v2 d11 io16ndb0v2 d12 io23ndb1v0 d13 io23pdb1v0 d14 io28ndb1v1 d15 io28pdb1v1 d16 gbb1/io34pdb1v1 d17 gba0/io35ndb1v1 d18 gba1/io35pdb1v1 d19 gnd d20 nc d21 nc d22 nc e1 nc e2 nc e3 gnd e4 gab2/io133pdb7v1 e5 gaa2/io134pdb7v1 e6 gndq e7 gab1/io01pdb0v0 e8 io05ndb0v0 e9 io10ndb0v1 e10 io12ndb0v2 e11 io16pdb0v2 e12 io20ndb1v0 fg484 pin number a3pe600 function e13 io24ndb1v0 e14 io24pdb1v0 e15 gbc1/io33pdb1v1 e16 gbb0/io34ndb1v1 e17 gndq e18 gba2/io36pdb2v0 e19 io42ndb2v0 e20 gnd e21 nc e22 nc f1 nc f2 io131ndb7v1 f3 io131pdb7v1 f4 io133ndb7v1 f5 io134ndb7v1 f6 vmv7 f7 vccpla f8 gac0/io02ndb0v0 f9 gac1/io02pdb0v0 f10 io15ndb0v2 f11 io15pdb0v2 f12 io20pdb1v0 f13 io25ndb1v0 f14 io27pdb1v0 f15 gbc0/io33ndb1v1 f16 vccplb f17 vmv2 f18 io36ndb2v0 f19 io42pdb2v0 f20 nc f21 nc f22 nc g1 io127ndb7v1 g2 io127pdb7v1 g3 nc g4 io128pdb7v1 fg484 pin number a3pe600 function g5 io129pdb7v1 g6 gac2/io132pdb7v1 g7 vcompla g8 gndq g9 io09ndb0v1 g10 io09pdb0v1 g11 io13pdb0v2 g12 io21pdb1v0 g13 io25pdb1v0 g14 io27ndb1v0 g15 gndq g16 vcomplb g17 gbb2/io37pdb2v0 g18 io39pdb2v0 g19 io39ndb2v0 g20 io43pdb2v0 g21 io43ndb2v0 g22 nc h1 nc h2 nc h3 vcc h4 io128ndb7v1 h5 io129ndb7v1 h6 io132ndb7v1 h7 io130pdb7v1 h8 vmv0 h9 vccib0 h10 vccib0 h11 io13ndb0v2 h12 io21ndb1v0 h13 vccib1 h14 vccib1 h15 vmv1 h16 gbc2/io38pdb2v0 h17 io37ndb2v0 h18 io41ndb2v0 fg484 pin number a3pe600 function
proasic3e flash family fpgas revision 13 4-19 h19 io41pdb2v0 h20 vcc h21 nc h22 nc j1 io123ndb7v0 j2 io123pdb7v0 j3 nc j4 io124pdb7v0 j5 io125pdb7v0 j6 io126pdb7v0 j7 io130ndb7v1 j8 vccib7 j9 gnd j10 vcc j11 vcc j12 vcc j13 vcc j14 gnd j15 vccib2 j16 io38ndb2v0 j17 io40ndb2v0 j18 io40pdb2v0 j19 io45ppb2v1 j20 nc j21 io48pdb2v1 j22 io46pdb2v1 k1 io121ndb7v0 k2 io121pdb7v0 k3 nc k4 io124ndb7v0 k5 io125ndb7v0 k6 io126ndb7v0 k7 gfc1/io120ppb7v0 k8 vccib7 k9 vcc k10 gnd fg484 pin number a3pe600 function k11 gnd k12 gnd k13 gnd k14 vcc k15 vccib2 k16 gcc1/io50ppb2v1 k17 io44ndb2v1 k18 io44pdb2v1 k19 io49npb2v1 k20 io45npb2v1 k21 io48ndb2v1 k22 io46ndb2v1 l1 nc l2 io122pdb7v0 l3 io122ndb7v0 l4 gfb0/io119npb7v0 l5 gfa0/io118ndb6v1 l6 gfb1/io119ppb7v0 l7 vcomplf l8 gfc0/io120npb7v0 l9 vcc l10 gnd l11 gnd l12 gnd l13 gnd l14 vcc l15 gcc0/io50npb2v1 l16 gcb1/io51ppb2v1 l17 gca0/io52npb3v0 l18 vcomplc l19 gcb0/io51npb2v1 l20 io49ppb2v1 l21 io47ndb2v1 l22 io47pdb2v1 m1 nc m2 io114npb6v1 fg484 pin number a3pe600 function m3 io117ndb6v1 m4 gfa2/io117pdb6v1 m5 gfa1/io118pdb6v1 m6 vccplf m7 io116ndb6v1 m8 gfb2/io116pdb6v1 m9 vcc m10 gnd m11 gnd m12 gnd m13 gnd m14 vcc m15 gcb2/io54ppb3v0 m16 gca1/io52ppb3v0 m17 gcc2/io55ppb3v0 m18 vccplc m19 gca2/io53pdb3v0 m20 io53ndb3v0 m21 io56pdb3v0 m22 nc n1 io114ppb6v1 n2 io111ndb6v1 n3 nc n4 gfc2/io115ppb6v1 n5 io113ppb6v1 n6 io112pdb6v1 n7 io112ndb6v1 n8 vccib6 n9 vcc n10 gnd n11 gnd n12 gnd n13 gnd n14 vcc n15 vccib3 n16 io54npb3v0 fg484 pin number a3pe600 function
package pin assignments 4-20 revision 13 n17 io57npb3v0 n18 io55npb3v0 n19 io57ppb3v0 n20 nc n21 io56ndb3v0 n22 io58pdb3v0 p1 nc p2 io111pdb6v1 p3 io115npb6v1 p4 io113npb6v1 p5 io109ppb6v0 p6 io108pdb6v0 p7 io108ndb6v0 p8 vccib6 p9 gnd p10 vcc p11 vcc p12 vcc p13 vcc p14 gnd p15 vccib3 p16 gdb0/io66npb3v1 p17 io60ndb3v1 p18 io60pdb3v1 p19 io61pdb3v1 p20 nc p21 io59pdb3v0 p22 io58ndb3v0 r1 nc r2 io110pdb6v0 r3 vcc r4 io109npb6v0 r5 io106ndb6v0 r6 io106pdb6v0 r7 gec0/io104npb6v0 r8 vmv5 fg484 pin number a3pe600 function r9 vccib5 r10 vccib5 r11 io84ndb5v0 r12 io84pdb5v0 r13 vccib4 r14 vccib4 r15 vmv3 r16 vccpld r17 gdb1/io66ppb3v1 r18 gdc1/io65pdb3v1 r19 io61ndb3v1 r20 vcc r21 io59ndb3v0 r22 io62pdb3v1 t1 nc t2 io110ndb6v0 t3 nc t4 io105pdb6v0 t5 io105ndb6v0 t6 gec1/io104ppb6v0 t7 vcomple t8 gndq t9 gea2/io101ppb5v2 t10 io92ndb5v1 t11 io90ndb5v1 t12 io82ndb5v0 t13 io74ndb4v1 t14 io74pdb4v1 t15 gndq t16 vcompld t17 vjtag t18 gdc0/io65ndb3v1 t19 gda1/io67pdb3v1 t20 nc t21 io64pdb3v1 t22 io62ndb3v1 fg484 pin number a3pe600 function u1 nc u2 io107pdb6v0 u3 io107ndb6v0 u4 geb1/io103pdb6v0 u5 geb0/io103ndb6v0 u6 vmv6 u7 vccple u8 io101npb5v2 u9 io95ppb5v1 u10 io92pdb5v1 u11 io90pdb5v1 u12 io82pdb5v0 u13 io76ndb4v1 u14 io76pdb4v1 u15 vmv4 u16 tck u17 vpump u18 trst u19 gda0/io67ndb3v1 u20 nc u21 io64ndb3v1 u22 io63pdb3v1 v1 nc v2 nc v3 gnd v4 gea1/io102pdb6v0 v5 gea0/io102ndb6v0 v6 gndq v7 gec2/io99pdb5v2 v8 io95npb5v1 v9 io91ndb5v1 v10 io91pdb5v1 v11 io83ndb5v0 v12 io83pdb5v0 v13 io77ndb4v1 v14 io77pdb4v1 fg484 pin number a3pe600 function
proasic3e flash family fpgas revision 13 4-21 v15 io69ndb4v0 v16 gdb2/io69pdb4v0 v17 tdi v18 gndq v19 tdo v20 gnd v21 nc v22 io63ndb3v1 w1 nc w2 nc w3 nc w4 gnd w5 io100ndb5v2 w6 geb2/io100pdb5v2 w7 io99ndb5v2 w8 io88ndb5v0 w9 io88pdb5v0 w10 io89ndb5v0 w11 io80ndb4v1 w12 io81ndb4v1 w13 io81pdb4v1 w14 io70ndb4v0 w15 gdc2/io70pdb4v0 w16 io68ndb4v0 w17 gda2/io68pdb4v0 w18 tms w19 gnd w20 nc w21 nc w22 nc y1 vccib6 y2 nc y3 nc y4 io98ndb5v2 y5 gnd y6 io94ndb5v1 fg484 pin number a3pe600 function y7 io94pdb5v1 y8 vcc y9 vcc y10 io89pdb5v0 y11 io80pdb4v1 y12 io78npb4v1 y13 nc y14 vcc y15 vcc y16 nc y17 nc y18 gnd y19 nc y20 nc y21 nc y22 vccib3 fg484 pin number a3pe600 function
package pin assignments 4-22 revision 13 fg484 pin number a3pe1500 function a1 gnd a2 gnd a3 vccib0 a4 io05ndb0v0 a5 io05pdb0v0 a6 io11ndb0v1 a7 io11pdb0v1 a8 io15pdb0v1 a9 io17pdb0v2 a10 io27ndb0v3 a11 io27pdb0v3 a12 io32pdb1v0 a13 io43pdb1v1 a14 io47ndb1v1 a15 io47pdb1v1 a16 io51ndb1v2 a17 io51pdb1v2 a18 io54ndb1v3 a19 nc a20 vccib1 a21 gnd a22 gnd aa1 gnd aa2 vccib6 aa3 nc aa4 io161pdb5v3 aa5 io155ndb5v2 aa6 io155pdb5v2 aa7 io154ndb5v2 aa8 io154pdb5v2 aa9 io143pdb5v1 aa10 io143ndb5v1 aa11 io131ppb4v2 aa12 io129ndb4v2 aa13 io129pdb4v2 aa14 nc aa15 nc aa16 io117ndb4v0 aa17 io117pdb4v0 aa18 io115ndb4v0 aa19 io115pdb4v0 aa20 nc aa21 vccib3 aa22 gnd ab1 gnd ab2 gnd ab3 vccib5 ab4 io159ndb5v3 ab5 io159pdb5v3 ab6 io149ndb5v1 ab7 io149pdb5v1 ab8 io138ndb5v0 ab9 io138pdb5v0 ab10 nc ab11 nc ab12 io127ndb4v2 ab13 io127pdb4v2 ab14 io125ndb4v1 ab15 io125pdb4v1 ab16 io122ndb4v1 ab17 io122pdb4v1 ab18 nc ab19 nc ab20 vccib4 ab21 gnd ab22 gnd b1 gnd b2 vccib7 b3 nc b4 io03ndb0v0 b5 io03pdb0v0 b6 io10ndb0v1 fg484 pin number a3pe1500 function b7 io10pdb0v1 b8 io15ndb0v1 b9 io17ndb0v2 b10 io20pdb0v2 b11 io29pdb0v3 b12 io32ndb1v0 b13 io43ndb1v1 b14 nc b15 nc b16 io53ndb1v2 b17 io53pdb1v2 b18 io54pdb1v3 b19 nc b20 nc b21 vccib2 b22 gnd c1 vccib7 c2 nc c3 nc c4 nc c5 gnd c6 io07ndb0v0 c7 io07pdb0v0 c8 vcc c9 vcc c10 io20ndb0v2 c11 io29ndb0v3 c12 nc c13 nc c14 vcc c15 vcc c16 nc c17 nc c18 gnd c19 nc c20 nc fg484 pin number a3pe1500 function
proasic3e flash family fpgas revision 13 4-23 c21 nc c22 vccib2 d1 nc d2 nc d3 nc d4 gnd d5 gaa0/io00ndb0v0 d6 gaa1/io00pdb0v0 d7 gab0/io01ndb0v0 d8 io09pdb0v1 d9 io13pdb0v1 d10 io21pdb0v2 d11 io31ndb0v3 d12 io37ndb1v0 d13 io37pdb1v0 d14 io49ndb1v2 d15 io49pdb1v2 d16 gbb1/io56pdb1v3 d17 gba0/io57ndb1v3 d18 gba1/io57pdb1v3 d19 gnd d20 nc d21 io69pdb2v1 d22 nc e1 nc e2 io218ppb7v3 e3 gnd e4 gab2/io220pdb7v3 e5 gaa2/io221pdb7v3 e6 gndq e7 gab1/io01pdb0v0 e8 io09ndb0v1 e9 io13ndb0v1 e10 io21ndb0v2 e11 io31pdb0v3 e12 io35ndb1v0 fg484 pin number a3pe1500 function e13 io41ndb1v1 e14 io41pdb1v1 e15 gbc1/io55pdb1v3 e16 gbb0/io56ndb1v3 e17 gndq e18 gba2/io58pdb2v0 e19 io63ndb2v0 e20 gnd e21 io69ndb2v1 e22 nc f1 io218npb7v3 f2 io216ndb7v3 f3 io216pdb7v3 f4 io220ndb7v3 f5 io221ndb7v3 f6 vmv7 f7 vccpla f8 gac0/io02ndb0v0 f9 gac1/io02pdb0v0 f10 io23ndb0v2 f11 io23pdb0v2 f12 io35pdb1v0 f13 io39ndb1v0 f14 io45pdb1v1 f15 gbc0/io55ndb1v3 f16 vccplb f17 vmv2 f18 io58ndb2v0 f19 io63pdb2v0 f20 nc f21 nc f22 nc g1 io211ndb7v2 g2 io211pdb7v2 g3 nc g4 io214pdb7v3 fg484 pin number a3pe1500 function g5 io217pdb7v3 g6 gac2/io219pdb7v3 g7 vcompla g8 gndq g9 io19ndb0v2 g10 io19pdb0v2 g11 io25pdb0v3 g12 io33pdb1v0 g13 io39pdb1v0 g14 io45ndb1v1 g15 gndq g16 vcomplb g17 gbb2/io59pdb2v0 g18 io62pdb2v0 g19 io62ndb2v0 g20 io71pdb2v2 g21 io71ndb2v2 g22 nc h1 io209psb7v2 h2 nc h3 vcc h4 io214ndb7v3 h5 io217ndb7v3 h6 io219ndb7v3 h7 io215pdb7v3 h8 vmv0 h9 vccib0 h10 vccib0 h11 io25ndb0v3 h12 io33ndb1v0 h13 vccib1 h14 vccib1 h15 vmv1 h16 gbc2/io60pdb2v0 h17 io59ndb2v0 h18 io67ndb2v1 fg484 pin number a3pe1500 function
package pin assignments 4-24 revision 13 h19 io67pdb2v1 h20 vcc h21 vmv2 h22 io74psb2v2 j1 io212ndb7v2 j2 io212pdb7v2 j3 vmv7 j4 io206pdb7v1 j5 io204pdb7v1 j6 io210pdb7v2 j7 io215ndb7v3 j8 vccib7 j9 gnd j10 vcc j11 vcc j12 vcc j13 vcc j14 gnd j15 vccib2 j16 io60ndb2v0 j17 io65ndb2v1 j18 io65pdb2v1 j19 io75ppb2v2 j20 gndq j21 io77pdb2v2 j22 io79pdb2v3 k1 io200ndb7v1 k2 io200pdb7v1 k3 gndq k4 io206ndb7v1 k5 io204ndb7v1 k6 io210ndb7v2 k7 gfc1/io192ppb7v0 k8 vccib7 k9 vcc k10 gnd fg484 pin number a3pe1500 function k11 gnd k12 gnd k13 gnd k14 vcc k15 vccib2 k16 gcc1/io85ppb2v3 k17 io73ndb2v2 k18 io73pdb2v2 k19 io81npb2v3 k20 io75npb2v2 k21 io77ndb2v2 k22 io79ndb2v3 l1 nc l2 io196pdb7v0 l3 io196ndb7v0 l4 gfb0/io191npb7v0 l5 gfa0/io190ndb6v2 l6 gfb1/io191ppb7v0 l7 vcomplf l8 gfc0/io192npb7v0 l9 vcc l10 gnd l11 gnd l12 gnd l13 gnd l14 vcc l15 gcc0/io85npb2v3 l16 gcb1/io86ppb2v3 l17 gca0/io87npb3v0 l18 vcomplc l19 gcb0/io86npb2v3 l20 io81ppb2v3 l21 io83ndb2v3 l22 io83pdb2v3 m1 gndq m2 io185npb6v2 fg484 pin number a3pe1500 function m3 io189ndb6v2 m4 gfa2/io189pdb6v2 m5 gfa1/io190pdb6v2 m6 vccplf m7 io188ndb6v2 m8 gfb2/io188pdb6v2 m9 vcc m10 gnd m11 gnd m12 gnd m13 gnd m14 vcc m15 gcb2/io89ppb3v0 m16 gca1/io87ppb3v0 m17 gcc2/io90ppb3v0 m18 vccplc m19 gca2/io88pdb3v0 m20 io88ndb3v0 m21 io93pdb3v0 m22 nc n1 io185ppb6v2 n2 io183ndb6v2 n3 vmv6 n4 gfc2/io187ppb6v2 n5 io184ppb6v2 n6 io186pdb6v2 n7 io186ndb6v2 n8 vccib6 n9 vcc n10 gnd n11 gnd n12 gnd n13 gnd n14 vcc n15 vccib3 n16 io89npb3v0 fg484 pin number a3pe1500 function
proasic3e flash family fpgas revision 13 4-25 n17 io91npb3v0 n18 io90npb3v0 n19 io91ppb3v0 n20 gndq n21 io93ndb3v0 n22 io95pdb3v1 p1 nc p2 io183pdb6v2 p3 io187npb6v2 p4 io184npb6v2 p5 io176ppb6v1 p6 io182pdb6v1 p7 io182ndb6v1 p8 vccib6 p9 gnd p10 vcc p11 vcc p12 vcc p13 vcc p14 gnd p15 vccib3 p16 gdb0/io109npb3v2 p17 io97ndb3v1 p18 io97pdb3v1 p19 io99pdb3v1 p20 vmv3 p21 io98pdb3v1 p22 io95ndb3v1 r1 nc r2 io177pdb6v1 r3 vcc r4 io176npb6v1 r5 io174ndb6v0 r6 io174pdb6v0 r7 gec0/io169npb6v0 r8 vmv5 fg484 pin number a3pe1500 function r9 vccib5 r10 vccib5 r11 io135ndb5v0 r12 io135pdb5v0 r13 vccib4 r14 vccib4 r15 vmv3 r16 vccpld r17 gdb1/io109ppb3v2 r18 gdc1/io108pdb3v2 r19 io99ndb3v1 r20 vcc r21 io98ndb3v1 r22 io101pdb3v1 t1 nc t2 io177ndb6v1 t3 nc t4 io171pdb6v0 t5 io171ndb6v0 t6 gec1/io169ppb6v0 t7 vcomple t8 gndq t9 gea2/io166ppb5v3 t10 io145ndb5v1 t11 io141ndb5v0 t12 io139ndb5v0 t13 io119ndb4v1 t14 io119pdb4v1 t15 gndq t16 vcompld t17 vjtag t18 gdc0/io108ndb3v2 t19 gda1/io110pdb3v2 t20 nc t21 io103pdb3v2 t22 io101ndb3v1 fg484 pin number a3pe1500 function u1 io175ppb6v1 u2 io173pdb6v0 u3 io173ndb6v0 u4 geb1/io168pdb6v0 u5 geb0/io168ndb6v0 u6 vmv6 u7 vccple u8 io166npb5v3 u9 io157ppb5v2 u10 io145pdb5v1 u11 io141pdb5v0 u12 io139pdb5v0 u13 io121ndb4v1 u14 io121pdb4v1 u15 vmv4 u16 tck u17 vpump u18 trst u19 gda0/io110ndb3v2 u20 nc u21 io103ndb3v2 u22 io105pdb3v2 v1 nc v2 io175npb6v1 v3 gnd v4 gea1/io167pdb6v0 v5 gea0/io167ndb6v0 v6 gndq v7 gec2/io164pdb5v3 v8 io157npb5v2 v9 io151ndb5v2 v10 io151pdb5v2 v11 io137ndb5v0 v12 io137pdb5v0 v13 io123ndb4v1 v14 io123pdb4v1 fg484 pin number a3pe1500 function
package pin assignments 4-26 revision 13 v15 io112ndb4v0 v16 gdb2/io112pdb4v0 v17 tdi v18 gndq v19 tdo v20 gnd v21 nc v22 io105ndb3v2 w1 nc w2 nc w3 nc w4 gnd w5 io165ndb5v3 w6 geb2/io165pdb5v3 w7 io164ndb5v3 w8 io153ndb5v2 w9 io153pdb5v2 w10 io147ndb5v1 w11 io133ndb4v2 w12 io130ndb4v2 w13 io130pdb4v2 w14 io113ndb4v0 w15 gdc2/io113pdb4v0 w16 io111ndb4v0 w17 gda2/io111pdb4v0 w18 tms w19 gnd w20 nc w21 nc w22 nc y1 vccib6 y2 nc y3 nc y4 io161ndb5v3 y5 gnd y6 io163ndb5v3 fg484 pin number a3pe1500 function y7 io163pdb5v3 y8 vcc y9 vcc y10 io147pdb5v1 y11 io133pdb4v2 y12 io131npb4v2 y13 nc y14 vcc y15 vcc y16 nc y17 nc y18 gnd y19 nc y20 nc y21 nc y22 vccib3 fg484 pin number a3pe1500 function
proasic3e flash family fpgas revision 13 4-27 fg484 pin number a3pe3000 function a1 gnd a2 gnd a3 vccib0 a4 io10ndb0v1 a5 io10pdb0v1 a6 io16ndb0v1 a7 io16pdb0v1 a8 io18pdb0v2 a9 io24pdb0v2 a10 io28ndb0v3 a11 io28pdb0v3 a12 io46pdb1v0 a13 io54pdb1v1 a14 io56ndb1v1 a15 io56pdb1v1 a16 io64ndb1v2 a17 io64pdb1v2 a18 io72ndb1v3 a19 io74ndb1v4 a20 vccib1 a21 gnd a22 gnd aa1 gnd aa2 vccib6 aa3 io228pdb5v4 aa4 io224pdb5v3 aa5 io218ndb5v3 aa6 io218pdb5v3 aa7 io212ndb5v2 aa8 io212pdb5v2 aa9 io198pdb5v0 aa10 io198ndb5v0 aa11 io188ppb4v4 aa12 io180ndb4v3 aa13 io180pdb4v3 aa14 io170ndb4v2 aa15 io170pdb4v2 aa16 io166ndb4v1 aa17 io166pdb4v1 aa18 io160ndb4v0 aa19 io160pdb4v0 aa20 io158npb4v0 aa21 vccib3 aa22 gnd ab1 gnd ab2 gnd ab3 vccib5 ab4 io216ndb5v2 ab5 io216pdb5v2 ab6 io210ndb5v2 ab7 io210pdb5v2 ab8 io208ndb5v1 ab9 io208pdb5v1 ab10 io197ndb5v0 ab11 io197pdb5v0 ab12 io174ndb4v2 ab13 io174pdb4v2 ab14 io172ndb4v2 ab15 io172pdb4v2 ab16 io168ndb4v1 ab17 io168pdb4v1 ab18 io162ndb4v1 ab19 io162pdb4v1 ab20 vccib4 ab21 gnd ab22 gnd b1 gnd b2 vccib7 b3 io06ppb0v0 b4 io08ndb0v0 b5 io08pdb0v0 b6 io14ndb0v1 fg484 pin number a3pe3000 function b7 io14pdb0v1 b8 io18ndb0v2 b9 io24ndb0v2 b10 io34pdb0v4 b11 io40pdb0v4 b12 io46ndb1v0 b13 io54ndb1v1 b14 io62ndb1v2 b15 io62pdb1v2 b16 io68ndb1v3 b17 io68pdb1v3 b18 io72pdb1v3 b19 io74pdb1v4 b20 io76npb1v4 b21 vccib2 b22 gnd c1 vccib7 c2 io303pdb7v3 c3 io305pdb7v3 c4 io06npb0v0 c5 gnd c6 io12ndb0v1 c7 io12pdb0v1 c8 vcc c9 vcc c10 io34ndb0v4 c11 io40ndb0v4 c12 io48ndb1v0 c13 io48pdb1v0 c14 vcc c15 vcc c16 io70ndb1v3 c17 io70pdb1v3 c18 gnd c19 io76ppb1v4 c20 io88ndb2v0 fg484 pin number a3pe3000 function
package pin assignments 4-28 revision 13 c21 io94ppb2v1 c22 vccib2 d1 io293pdb7v2 d2 io303ndb7v3 d3 io305ndb7v3 d4 gnd d5 gaa0/io00ndb0v0 d6 gaa1/io00pdb0v0 d7 gab0/io01ndb0v0 d8 io20pdb0v2 d9 io22pdb0v2 d10 io30pdb0v3 d11 io38ndb0v4 d12 io52ndb1v1 d13 io52pdb1v1 d14 io66ndb1v3 d15 io66pdb1v3 d16 gbb1/io80pdb1v4 d17 gba0/io81ndb1v4 d18 gba1/io81pdb1v4 d19 gnd d20 io88pdb2v0 d21 io90pdb2v1 d22 io94npb2v1 e1 io293ndb7v2 e2 io299ppb7v3 e3 gnd e4 gab2/io308pdb7v4 e5 gaa2/io309pdb7v4 e6 gndq e7 gab1/io01pdb0v0 e8 io20ndb0v2 e9 io22ndb0v2 e10 io30ndb0v3 e11 io38pdb0v4 e12 io44ndb1v0 fg484 pin number a3pe3000 function e13 io58ndb1v2 e14 io58pdb1v2 e15 gbc1/io79pdb1v4 e16 gbb0/io80ndb1v4 e17 gndq e18 gba2/io82pdb2v0 e19 io86ndb2v0 e20 gnd e21 io90ndb2v1 e22 io98pdb2v2 f1 io299npb7v3 f2 io301ndb7v3 f3 io301pdb7v3 f4 io308ndb7v4 f5 io309ndb7v4 f6 vmv7 f7 vccpla f8 gac0/io02ndb0v0 f9 gac1/io02pdb0v0 f10 io32ndb0v3 f11 io32pdb0v3 f12 io44pdb1v0 f13 io50ndb1v1 f14 io60pdb1v2 f15 gbc0/io79ndb1v4 f16 vccplb f17 vmv2 f18 io82ndb2v0 f19 io86pdb2v0 f20 io96pdb2v1 f21 io96ndb2v1 f22 io98ndb2v2 g1 io289ndb7v1 g2 io289pdb7v1 g3 io291ppb7v2 g4 io295pdb7v2 fg484 pin number a3pe3000 function g5 io297pdb7v2 g6 gac2/io307pdb7v4 g7 vcompla g8 gndq g9 io26ndb0v3 g10 io26pdb0v3 g11 io36pdb0v4 g12 io42pdb1v0 g13 io50pdb1v1 g14 io60ndb1v2 g15 gndq g16 vcomplb g17 gbb2/io83pdb2v0 g18 io92pdb2v1 g19 io92ndb2v1 g20 io102pdb2v2 g21 io102ndb2v2 g22 io105ndb2v2 h1 io286psb7v1 h2 io291npb7v2 h3 vcc h4 io295ndb7v2 h5 io297ndb7v2 h6 io307ndb7v4 h7 io287pdb7v1 h8 vmv0 h9 vccib0 h10 vccib0 h11 io36ndb0v4 h12 io42ndb1v0 h13 vccib1 h14 vccib1 h15 vmv1 h16 gbc2/io84pdb2v0 h17 io83ndb2v0 h18 io100ndb2v2 fg484 pin number a3pe3000 function
proasic3e flash family fpgas revision 13 4-29 h19 io100pdb2v2 h20 vcc h21 vmv2 h22 io105pdb2v2 j1 io285ndb7v1 j2 io285pdb7v1 j3 vmv7 j4 io279pdb7v0 j5 io283pdb7v1 j6 io281pdb7v0 j7 io287ndb7v1 j8 vccib7 j9 gnd j10 vcc j11 vcc j12 vcc j13 vcc j14 gnd j15 vccib2 j16 io84ndb2v0 j17 io104ndb2v2 j18 io104pdb2v2 j19 io106ppb2v3 j20 gndq j21 io109pdb2v3 j22 io107pdb2v3 k1 io277ndb7v0 k2 io277pdb7v0 k3 gndq k4 io279ndb7v0 k5 io283ndb7v1 k6 io281ndb7v0 k7 gfc1/io275ppb7v0 k8 vccib7 k9 vcc k10 gnd fg484 pin number a3pe3000 function k11 gnd k12 gnd k13 gnd k14 vcc k15 vccib2 k16 gcc1/io112ppb2v3 k17 io108ndb2v3 k18 io108pdb2v3 k19 io110npb2v3 k20 io106npb2v3 k21 io109ndb2v3 k22 io107ndb2v3 l1 io257psb6v2 l2 io276pdb7v0 l3 io276ndb7v0 l4 gfb0/io274npb7v0 l5 gfa0/io273ndb6v4 l6 gfb1/io274ppb7v0 l7 vcomplf l8 gfc0/io275npb7v0 l9 vcc l10 gnd l11 gnd l12 gnd l13 gnd l14 vcc l15 gcc0/io112npb2v3 l16 gcb1/io113ppb2v3 l17 gca0/io114npb3v0 l18 vcomplc l19 gcb0/io113npb2v3 l20 io110ppb2v3 l21 io111ndb2v3 l22 io111pdb2v3 m1 gndq m2 io255npb6v2 fg484 pin number a3pe3000 function m3 io272ndb6v4 m4 gfa2/io272pdb6v4 m5 gfa1/io273pdb6v4 m6 vccplf m7 io271ndb6v4 m8 gfb2/io271pdb6v4 m9 vcc m10 gnd m11 gnd m12 gnd m13 gnd m14 vcc m15 gcb2/io116ppb3v0 m16 gca1/io114ppb3v0 m17 gcc2/io117ppb3v0 m18 vccplc m19 gca2/io115pdb3v0 m20 io115ndb3v0 m21 io126pdb3v1 m22 io124psb3v1 n1 io255ppb6v2 n2 io253ndb6v2 n3 vmv6 n4 gfc2/io270ppb6v4 n5 io261ppb6v3 n6 io263pdb6v3 n7 io263ndb6v3 n8 vccib6 n9 vcc n10 gnd n11 gnd n12 gnd n13 gnd n14 vcc n15 vccib3 n16 io116npb3v0 fg484 pin number a3pe3000 function
package pin assignments 4-30 revision 13 n17 io132npb3v2 n18 io117npb3v0 n19 io132ppb3v2 n20 gndq n21 io126ndb3v1 n22 io128pdb3v1 p1 io247pdb6v1 p2 io253pdb6v2 p3 io270npb6v4 p4 io261npb6v3 p5 io249ppb6v1 p6 io259pdb6v3 p7 io259ndb6v3 p8 vccib6 p9 gnd p10 vcc p11 vcc p12 vcc p13 vcc p14 gnd p15 vccib3 p16 gdb0/io152npb3v4 p17 io136ndb3v2 p18 io136pdb3v2 p19 io138pdb3v3 p20 vmv3 p21 io130pdb3v2 p22 io128ndb3v1 r1 io247ndb6v1 r2 io245pdb6v1 r3 vcc r4 io249npb6v1 r5 io251ndb6v2 r6 io251pdb6v2 r7 gec0/io236npb6v0 r8 vmv5 fg484 pin number a3pe3000 function r9 vccib5 r10 vccib5 r11 io196ndb5v0 r12 io196pdb5v0 r13 vccib4 r14 vccib4 r15 vmv3 r16 vccpld r17 gdb1/io152ppb3v4 r18 gdc1/io151pdb3v4 r19 io138ndb3v3 r20 vcc r21 io130ndb3v2 r22 io134pdb3v2 t1 io243ppb6v1 t2 io245ndb6v1 t3 io243npb6v1 t4 io241pdb6v0 t5 io241ndb6v0 t6 gec1/io236ppb6v0 t7 vcomple t8 gndq t9 gea2/io233ppb5v4 t10 io206ndb5v1 t11 io202ndb5v1 t12 io194ndb5v0 t13 io186ndb4v4 t14 io186pdb4v4 t15 gndq t16 vcompld t17 vjtag t18 gdc0/io151ndb3v4 t19 gda1/io153pdb3v4 t20 io144pdb3v3 t21 io140pdb3v3 t22 io134ndb3v2 fg484 pin number a3pe3000 function u1 io240ppb6v0 u2 io238pdb6v0 u3 io238ndb6v0 u4 geb1/io235pdb6v0 u5 geb0/io235ndb6v0 u6 vmv6 u7 vccple u8 io233npb5v4 u9 io222ppb5v3 u10 io206pdb5v1 u11 io202pdb5v1 u12 io194pdb5v0 u13 io176ndb4v2 u14 io176pdb4v2 u15 vmv4 u16 tck u17 vpump u18 trst u19 gda0/io153ndb3v4 u20 io144ndb3v3 u21 io140ndb3v3 u22 io142pdb3v3 v1 io239pdb6v0 v2 io240npb6v0 v3 gnd v4 gea1/io234pdb6v0 v5 gea0/io234ndb6v0 v6 gndq v7 gec2/io231pdb5v4 v8 io222npb5v3 v9 io204ndb5v1 v10 io204pdb5v1 v11 io195ndb5v0 v12 io195pdb5v0 v13 io178ndb4v3 v14 io178pdb4v3 fg484 pin number a3pe3000 function
proasic3e flash family fpgas revision 13 4-31 v15 io155ndb4v0 v16 gdb2/io155pdb4v0 v17 tdi v18 gndq v19 tdo v20 gnd v21 io146pdb3v4 v22 io142ndb3v3 w1 io239ndb6v0 w2 io237pdb6v0 w3 io230psb5v4 w4 gnd w5 io232ndb5v4 w6 geb2/io232pdb5v4 w7 io231ndb5v4 w8 io214ndb5v2 w9 io214pdb5v2 w10 io200ndb5v0 w11 io192ndb4v4 w12 io184ndb4v3 w13 io184pdb4v3 w14 io156ndb4v0 w15 gdc2/io156pdb4v0 w16 io154ndb4v0 w17 gda2/io154pdb4v0 w18 tms w19 gnd w20 io150ndb3v4 w21 io146ndb3v4 w22 io148ppb3v4 y1 vccib6 y2 io237ndb6v0 y3 io228ndb5v4 y4 io224ndb5v3 y5 gnd y6 io220ndb5v3 fg484 pin number a3pe3000 function y7 io220pdb5v3 y8 vcc y9 vcc y10 io200pdb5v0 y11 io192pdb4v4 y12 io188npb4v4 y13 io187psb4v4 y14 vcc y15 vcc y16 io164ndb4v1 y17 io164pdb4v1 y18 gnd y19 io158ppb4v0 y20 io150pdb3v4 y21 io148npb3v4 y22 vccib3 fg484 pin number a3pe3000 function
package pin assignments 4-32 revision 13 fg676 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/pr oducts/solutions/package/docs.aspx . note: this is the bottom view of the package. a1 ball pad corner a b c d e f g h j k l m n p r t u v w y aa ab ac ad ae af 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
proasic3e flash family fpgas revision 13 4-33 fg676 pin number a3pe1500 function a1 gnd a2 gnd a3 gaa0/io00ndb0v0 a4 gaa1/io00pdb0v0 a5 io06ndb0v0 a6 io09ndb0v1 a7 io09pdb0v1 a8 io14ndb0v1 a9 io14pdb0v1 a10 io22ndb0v2 a11 io22pdb0v2 a12 io26ndb0v3 a13 io26pdb0v3 a14 io30ndb0v3 a15 io30pdb0v3 a16 io34ndb1v0 a17 io34pdb1v0 a18 io38ndb1v0 a19 io38pdb1v0 a20 io41pdb1v1 a21 io44pdb1v1 a22 io49pdb1v2 a23 io50pdb1v2 a24 gbc1/io55pdb1v3 a25 gnd a26 gnd aa1 io174pdb6v0 aa2 io171pdb6v0 aa3 gea1/io167ppb6v0 aa4 gec0/io169npb6v0 aa5 vcomple aa6 gnd aa7 io165ndb5v3 aa8 geb2/io165pdb5v3 aa9 io163pdb5v3 aa10 io159ndb5v3 aa11 io153ndb5v2 aa12 io147ndb5v1 aa13 io139ndb5v0 aa14 io137ndb5v0 aa15 io123ndb4v1 aa16 io123pdb4v1 aa17 io117ndb4v0 aa18 io117pdb4v0 aa19 gdb2/io112pdb4v0 aa20 gndq aa21 tdo aa22 gnd aa23 gnd aa24 io102ndb3v1 aa25 io102pdb3v1 aa26 io98ndb3v1 ab1 io174ndb6v0 ab2 io171ndb6v0 ab3 geb1/io168ppb6v0 ab4 gea0/io167npb6v0 ab5 vccple ab6 gnd ab7 gnd ab8 io156ndb5v2 ab9 io156pdb5v2 ab10 io150pdb5v1 ab11 io155pdb5v2 ab12 io142pdb5v0 ab13 io135ndb5v0 ab14 io135pdb5v0 ab15 io132pdb4v2 ab16 io129pdb4v2 ab17 io121pdb4v1 ab18 io119ndb4v1 ab19 io112ndb4v0 ab20 vmv4 fg676 pin number a3pe1500 function ab21 tck ab22 trst ab23 gdc0/io108ndb3v2 ab24 gdc1/io108pdb3v2 ab25 io104ndb3v2 ab26 io104pdb3v2 ac1 io170pdb6v0 ac2 geb0/io168npb6v0 ac3 io166npb5v3 ac4 gndq ac5 gnd ac6 io160pdb5v3 ac7 io161pdb5v3 ac8 io154pdb5v2 ac9 gnd ac10 io150ndb5v1 ac11 io155ndb5v2 ac12 io142ndb5v0 ac13 io138ndb5v0 ac14 io138pdb5v0 ac15 io132ndb4v2 ac16 io129ndb4v2 ac17 io121ndb4v1 ac18 io119pdb4v1 ac19 io118ndb4v0 ac20 io118pdb4v0 ac21 io114ppb4v0 ac22 tms ac23 vjtag ac24 vmv3 ac25 io106ndb3v2 ac26 io106pdb3v2 ad1 io170ndb6v0 ad2 gea2/io166ppb5v3 ad3 vmv5 ad4 gec2/io164pdb5v3 fg676 pin number a3pe1500 function
package pin assignments 4-34 revision 13 ad5 io162pdb5v3 ad6 io160ndb5v3 ad7 io161ndb5v3 ad8 io154ndb5v2 ad9 io148pdb5v1 ad10 io151pdb5v2 ad11 io144pdb5v1 ad12 io140pdb5v0 ad13 io143pdb5v1 ad14 io141pdb5v0 ad15 io134pdb4v2 ad16 io133pdb4v2 ad17 io127pdb4v2 ad18 io130pdb4v2 ad19 io126pdb4v1 ad20 io124pdb4v1 ad21 io120pdb4v1 ad22 io114npb4v0 ad23 tdi ad24 gndq ad25 gda0/io110ndb3v2 ad26 gda1/io110pdb3v2 ae1 gnd ae2 gnd ae3 gnd ae4 io164ndb5v3 ae5 io162ndb5v3 ae6 io158ppb5v2 ae7 io157ppb5v2 ae8 io152ppb5v2 ae9 io148ndb5v1 ae10 io151ndb5v2 ae11 io144ndb5v1 ae12 io140ndb5v0 ae13 io143ndb5v1 ae14 io141ndb5v0 fg676 pin number a3pe1500 function ae15 io134ndb4v2 ae16 io133ndb4v2 ae17 io127ndb4v2 ae18 io130ndb4v2 ae19 io126ndb4v1 ae20 io124ndb4v1 ae21 io120ndb4v1 ae22 io116pdb4v0 ae23 gdc2/io113pdb4v0 ae24 gda2/io111pdb4v0 ae25 gnd ae26 gnd af1 gnd af2 gnd af3 gnd af4 gnd af5 io158npb5v2 af6 io157npb5v2 af7 io152npb5v2 af8 io146ndb5v1 af9 io146pdb5v1 af10 io149ndb5v1 af11 io149pdb5v1 af12 io145ndb5v1 af13 io145pdb5v1 af14 io136ndb5v0 af15 io136pdb5v0 af16 io131ndb4v2 af17 io131pdb4v2 af18 io128ndb4v2 af19 io128pdb4v2 af20 io122ndb4v1 af21 io122pdb4v1 af22 io116ndb4v0 af23 io113ndb4v0 af24 io111ndb4v0 fg676 pin number a3pe1500 function af25 gnd af26 gnd b1 gnd b2 gnd b3 gnd b4 gnd b5 io06pdb0v0 b6 io04ndb0v0 b7 io07ndb0v0 b8 io11ndb0v1 b9 io10ndb0v1 b10 io16ndb0v2 b11 io20ndb0v2 b12 io24ndb0v3 b13 io23ndb0v2 b14 io28ndb0v3 b15 io31ndb0v3 b16 io32pdb1v0 b17 io36pdb1v0 b18 io37pdb1v0 b19 io42npb1v1 b20 io41ndb1v1 b21 io44ndb1v1 b22 io49ndb1v2 b23 io50ndb1v2 b24 gbc0/io55ndb1v3 b25 gnd b26 gnd c1 gnd c2 gnd c3 gnd c4 gnd c5 gaa2/io221pdb7v3 c6 io04pdb0v0 c7 io07pdb0v0 c8 io11pdb0v1 fg676 pin number a3pe1500 function
proasic3e flash family fpgas revision 13 4-35 c9 io10pdb0v1 c10 io16pdb0v2 c11 io20pdb0v2 c12 io24pdb0v3 c13 io23pdb0v2 c14 io28pdb0v3 c15 io31pdb0v3 c16 io32ndb1v0 c17 io36ndb1v0 c18 io37ndb1v0 c19 io45ndb1v1 c20 io42ppb1v1 c21 io46npb1v1 c22 io48npb1v2 c23 gbb0/io56npb1v3 c24 vmv1 c25 gbc2/io60pdb2v0 c26 io60ndb2v0 d1 io218ndb7v3 d2 io218pdb7v3 d3 gnd d4 vmv7 d5 io221ndb7v3 d6 gac0/io02ndb0v0 d7 gac1/io02pdb0v0 d8 io05ndb0v0 d9 io08pdb0v1 d10 io12ndb0v1 d11 io18ndb0v2 d12 io17ndb0v2 d13 io25ndb0v3 d14 io29ndb0v3 d15 io33ndb1v0 d16 io40pdb1v1 d17 io43ndb1v1 d18 io47pdb1v1 fg676 pin number a3pe1500 function d19 io45pdb1v1 d20 io46ppb1v1 d21 io48ppb1v2 d22 gba0/io57npb1v3 d23 gndq d24 gbb1/io56ppb1v3 d25 gbb2/io59pdb2v0 d26 io59ndb2v0 e1 io212pdb7v2 e2 io211ndb7v2 e3 io211pdb7v2 e4 io220npb7v3 e5 gndq e6 gab2/io220ppb7v3 e7 gab1/io01pdb0v0 e8 io05pdb0v0 e9 io08ndb0v1 e10 io12pdb0v1 e11 io18pdb0v2 e12 io17pdb0v2 e13 io25pdb0v3 e14 io29pdb0v3 e15 io33pdb1v0 e16 io40ndb1v1 e17 io43pdb1v1 e18 io47ndb1v1 e19 io54ndb1v3 e20 io52ndb1v2 e21 io52pdb1v2 e22 vccplb e23 gba1/io57ppb1v3 e24 io63pdb2v0 e25 io63ndb2v0 e26 io68pdb2v1 f1 io212ndb7v2 f2 io203ppb7v1 fg676 pin number a3pe1500 function f3 io213ndb7v2 f4 io213pdb7v2 f5 gnd f6 vccpla f7 gab0/io01ndb0v0 f8 gndq f9 io03pdb0v0 f10 io13pdb0v1 f11 io15pdb0v1 f12 io19pdb0v2 f13 io21pdb0v2 f14 io27ndb0v3 f15 io35pdb1v0 f16 io39ndb1v0 f17 io51pdb1v2 f18 io53pdb1v2 f19 io54pdb1v3 f20 vmv2 f21 vcomplb f22 io61pdb2v0 f23 io61ndb2v0 f24 io66pdb2v1 f25 io66ndb2v1 f26 io68ndb2v1 g1 io203npb7v1 g2 io207ndb7v2 g3 io207pdb7v2 g4 io216ndb7v3 g5 io216pdb7v3 g6 vcompla g7 vmv0 g8 vcc g9 io03ndb0v0 g10 io13ndb0v1 g11 io15ndb0v1 g12 io19ndb0v2 fg676 pin number a3pe1500 function
package pin assignments 4-36 revision 13 g13 io21ndb0v2 g14 io27pdb0v3 g15 io35ndb1v0 g16 io39pdb1v0 g17 io51ndb1v2 g18 io53ndb1v2 g19 vccib1 g20 gba2/io58ppb2v0 g21 gndq g22 io64ndb2v1 g23 io64pdb2v1 g24 io72pdb2v2 g25 io72ndb2v2 g26 io78pdb2v2 h1 io208ndb7v2 h2 io208pdb7v2 h3 io209ndb7v2 h4 io209pdb7v2 h5 io219ndb7v3 h6 gac2/io219pdb7v3 h7 vccib7 h8 vcc h9 vccib0 h10 vccib0 h11 vccib0 h12 vccib0 h13 vccib0 h14 vccib1 h15 vccib1 h16 vccib1 h17 vccib1 h18 vccib1 h19 vcc h20 vcc h21 io58npb2v0 h22 io70pdb2v1 fg676 pin number a3pe1500 function h23 io69pdb2v1 h24 io76pdb2v2 h25 io76ndb2v2 h26 io78ndb2v2 j1 io197ndb7v0 j2 io197pdb7v0 j3 vmv7 j4 io215ndb7v3 j5 io215pdb7v3 j6 io214pdb7v3 j7 io214ndb7v3 j8 vccib7 j9 vcc j10 vcc j11 vcc j12 vcc j13 vcc j14 vcc j15 vcc j16 vcc j17 vcc j18 vcc j19 vccib2 j20 io62pdb2v0 j21 io62ndb2v0 j22 io70ndb2v1 j23 io69ndb2v1 j24 vmv2 j25 io80pdb2v3 j26 io80ndb2v3 k1 io195pdb7v0 k2 io199ndb7v1 k3 io199pdb7v1 k4 io205ndb7v1 k5 io205pdb7v1 k6 io217pdb7v3 fg676 pin number a3pe1500 function k7 io217ndb7v3 k8 vccib7 k9 vcc k10 gnd k11 gnd k12 gnd k13 gnd k14 gnd k15 gnd k16 gnd k17 gnd k18 vcc k19 vccib2 k20 io65pdb2v1 k21 io65ndb2v1 k22 io74pdb2v2 k23 io74ndb2v2 k24 io75pdb2v2 k25 io75ndb2v2 k26 io84pdb2v3 l1 io195ndb7v0 l2 io198ppb7v0 l3 gndq l4 io201pdb7v1 l5 io201ndb7v1 l6 io210ndb7v2 l7 io210pdb7v2 l8 vccib7 l9 vcc l10 gnd l11 gnd l12 gnd l13 gnd l14 gnd l15 gnd l16 gnd fg676 pin number a3pe1500 function
proasic3e flash family fpgas revision 13 4-37 l17 gnd l18 vcc l19 vccib2 l20 io67pdb2v1 l21 io67ndb2v1 l22 io71pdb2v2 l23 io71ndb2v2 l24 gndq l25 io82pdb2v3 l26 io84ndb2v3 m1 io198npb7v0 m2 io202pdb7v1 m3 io202ndb7v1 m4 io206ndb7v1 m5 io206pdb7v1 m6 io204ndb7v1 m7 io204pdb7v1 m8 vccib7 m9 vcc m10 gnd m11 gnd m12 gnd m13 gnd m14 gnd m15 gnd m16 gnd m17 gnd m18 vcc m19 vccib2 m20 io73ndb2v2 m21 io73pdb2v2 m22 io81ppb2v3 m23 io77pdb2v2 m24 io77ndb2v2 m25 io82ndb2v3 m26 io83pdb2v3 fg676 pin number a3pe1500 function n1 gfb0/io191npb7v0 n2 vcomplf n3 gfb1/io191ppb7v0 n4 io196pdb7v0 n5 gfa0/io190ndb6v2 n6 io200pdb7v1 n7 io200ndb7v1 n8 vccib7 n9 vcc n10 gnd n11 gnd n12 gnd n13 gnd n14 gnd n15 gnd n16 gnd n17 gnd n18 vcc n19 vccib2 n20 io79pdb2v3 n21 io79ndb2v3 n22 gca2/io88ppb3v0 n23 io81npb2v3 n24 gca0/io87ndb3v0 n25 gcb0/io86npb2v3 n26 io83ndb2v3 p1 gfa2/io189pdb6v2 p2 vccplf p3 io193ppb7v0 p4 io196ndb7v0 p5 gfa1/io190pdb6v2 p6 io194pdb7v0 p7 io194ndb7v0 p8 vccib6 p9 vcc p10 gnd fg676 pin number a3pe1500 function p11 gnd p12 gnd p13 gnd p14 gnd p15 gnd p16 gnd p17 gnd p18 vcc p19 vccib3 p20 gcc0/io85ndb2v3 p21 gcc1/io85pdb2v3 p22 gcb1/io86ppb2v3 p23 io88npb3v0 p24 gca1/io87pdb3v0 p25 vccplc p26 vcomplc r1 io189ndb6v2 r2 io185pdb6v2 r3 io187npb6v2 r4 io193npb7v0 r5 gfc2/io187ppb6v2 r6 gfc1/io192pdb7v0 r7 gfc0/io192ndb7v0 r8 vccib6 r9 vcc r10 gnd r11 gnd r12 gnd r13 gnd r14 gnd r15 gnd r16 gnd r17 gnd r18 vcc r19 vccib3 r20 nc fg676 pin number a3pe1500 function
package pin assignments 4-38 revision 13 r21 io89ndb3v0 r22 gcb2/io89pdb3v0 r23 io90ndb3v0 r24 gcc2/io90pdb3v0 r25 io91pdb3v0 r26 io91ndb3v0 t1 io186pdb6v2 t2 io185ndb6v2 t3 gndq t4 io180pdb6v1 t5 io180ndb6v1 t6 io188ndb6v2 t7 gfb2/io188pdb6v2 t8 vccib6 t9 vcc t10 gnd t11 gnd t12 gnd t13 gnd t14 gnd t15 gnd t16 gnd t17 gnd t18 vcc t19 vccib3 t20 io99pdb3v1 t21 io99ndb3v1 t22 io97pdb3v1 t23 io97ndb3v1 t24 gndq t25 io93ppb3v0 t26 nc u1 io186ndb6v2 u2 io184ndb6v2 u3 io184pdb6v2 u4 io182ndb6v1 fg676 pin number a3pe1500 function u5 io182pdb6v1 u6 io178pdb6v1 u7 io178ndb6v1 u8 vccib6 u9 vcc u10 gnd u11 gnd u12 gnd u13 gnd u14 gnd u15 gnd u16 gnd u17 gnd u18 vcc u19 vccib3 u20 nc u21 io101ndb3v1 u22 io101pdb3v1 u23 io92ndb3v0 u24 io92pdb3v0 u25 io95pdb3v1 u26 io93npb3v0 v1 io183pdb6v2 v2 io183ndb6v2 v3 vmv6 v4 io181pdb6v1 v5 io181ndb6v1 v6 io176pdb6v1 v7 io176ndb6v1 v8 vccib6 v9 vcc v10 vcc v11 vcc v12 vcc v13 vcc v14 vcc fg676 pin number a3pe1500 function v15 vcc v16 vcc v17 vcc v18 vcc v19 vccib3 v20 io107pdb3v2 v21 io107ndb3v2 v22 io103ndb3v2 v23 io103pdb3v2 v24 vmv3 v25 io95ndb3v1 v26 io94pdb3v0 w1 io179ndb6v1 w2 io179pdb6v1 w3 io177ndb6v1 w4 io177pdb6v1 w5 io172pdb6v0 w6 io172ndb6v0 w7 vcc w8 vcc w9 vccib5 w10 vccib5 w11 vccib5 w12 vccib5 w13 vccib5 w14 vccib4 w15 vccib4 w16 vccib4 w17 vccib4 w18 vccib4 w19 vcc w20 vccib3 w21 gdb0/io109ndb3v2 w22 gdb1/io109pdb3v2 w23 io105ndb3v2 w24 io105pdb3v2 fg676 pin number a3pe1500 function
proasic3e flash family fpgas revision 13 4-39 w25 io96pdb3v1 w26 io94ndb3v0 y1 io175ndb6v1 y2 io175pdb6v1 y3 io173ndb6v0 y4 io173pdb6v0 y5 gec1/io169ppb6v0 y6 gndq y7 vmv6 y8 vccib5 y9 io163ndb5v3 y10 io159pdb5v3 y11 io153pdb5v2 y12 io147pdb5v1 y13 io139pdb5v0 y14 io137pdb5v0 y15 io125ndb4v1 y16 io125pdb4v1 y17 io115ndb4v0 y18 io115pdb4v0 y19 vcc y20 vpump y21 vcompld y22 vccpld y23 io100ndb3v1 y24 io100pdb3v1 y25 io96ndb3v1 y26 io98pdb3v1 fg676 pin number a3pe1500 function
package pin assignments 4-40 revision 13 fg896 note for package manufacturing and environmental information, visit the resource center at http://www.microsemi.com/soc/pr oducts/solutions/package/docs.aspx . note: this is the bottom view of the package. a1 ball pad corner a b c d e f g h j k l m n p r t u v w y aa ab ac ad ae af 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ag ah aj ak
proasic3e flash family fpgas revision 13 4-41 fg896 pin number a3pe3000 function a2 gnd a3 gnd a4 io14npb0v1 a5 gnd a6 io07npb0v0 a7 gnd a8 io09ndb0v1 a9 io17ndb0v2 a10 io17pdb0v2 a11 io21ndb0v2 a12 io21pdb0v2 a13 io33ndb0v4 a14 io33pdb0v4 a15 io35ndb0v4 a16 io35pdb0v4 a17 io41ndb1v0 a18 io43ndb1v0 a19 io43pdb1v0 a20 io45ndb1v0 a21 io45pdb1v0 a22 io57ndb1v2 a23 io57pdb1v2 a24 gnd a25 io69ppb1v3 a26 gnd a27 gbc1/io79ppb1v4 a28 gnd a29 gnd aa1 io256pdb6v2 aa2 io248pdb6v1 aa3 io248ndb6v1 aa4 io246ndb6v1 aa5 gea1/io234pdb6v0 aa6 gea0/io234ndb6v0 aa7 io243ppb6v1 aa8 io245ndb6v1 aa9 geb1/io235ppb6v0 aa10 vcc aa11 io226ppb5v4 aa12 vccib5 aa13 vccib5 aa14 vccib5 aa15 vccib5 aa16 vccib4 aa17 vccib4 aa18 vccib4 aa19 vccib4 aa20 io174pdb4v2 aa21 vcc aa22 io142npb3v3 aa23 io144ndb3v3 aa24 io144pdb3v3 aa25 io146ndb3v4 aa26 io146pdb3v4 aa27 io147pdb3v4 aa28 io139ndb3v3 aa29 io139pdb3v3 aa30 io133ndb3v2 ab1 io256ndb6v2 ab2 io244pdb6v1 ab3 io244ndb6v1 ab4 io241pdb6v0 ab5 io241ndb6v0 ab6 io243npb6v1 ab7 vccib6 ab8 vccple ab9 vcc ab10 io222pdb5v3 ab11 io218ppb5v3 ab12 io206ndb5v1 ab13 io206pdb5v1 ab14 io198ndb5v0 fg896 pin number a3pe3000 function ab15 io198pdb5v0 ab16 io192ndb4v4 ab17 io192pdb4v4 ab18 io178ndb4v3 ab19 io178pdb4v3 ab20 io174ndb4v2 ab21 io162npb4v1 ab22 vcc ab23 vccpld ab24 vccib3 ab25 io150pdb3v4 ab26 io148pdb3v4 ab27 io147ndb3v4 ab28 io145pdb3v3 ab29 io143pdb3v3 ab30 io137pdb3v2 ac1 io254pdb6v2 ac2 io254ndb6v2 ac3 io240pdb6v0 ac4 gec1/io236pdb6v0 ac5 io237pdb6v0 ac6 io237ndb6v0 ac7 vcomple ac8 gnd ac9 io226npb5v4 ac10 io222ndb5v3 ac11 io216npb5v2 ac12 io210npb5v2 ac13 io204ndb5v1 ac14 io204pdb5v1 ac15 io194ndb5v0 ac16 io188ndb4v4 ac17 io188pdb4v4 ac18 io182ppb4v3 ac19 io170npb4v2 ac20 io164ndb4v1 fg896 pin number a3pe3000 function
package pin assignments 4-42 revision 13 ac21 io164pdb4v1 ac22 io162ppb4v1 ac23 gnd ac24 vcompld ac25 io150ndb3v4 ac26 io148ndb3v4 ac27 gda1/io153pdb3v4 ac28 io145ndb3v3 ac29 io143ndb3v3 ac30 io137ndb3v2 ad1 gnd ad2 io242npb6v1 ad3 io240ndb6v0 ad4 gec0/io236ndb6v0 ad5 vccib6 ad6 gndq ad7 vcc ad8 vmv5 ad9 vccib5 ad10 io224ppb5v3 ad11 io218npb5v3 ad12 io216ppb5v2 ad13 io210ppb5v2 ad14 io202ppb5v1 ad15 io194pdb5v0 ad16 io190pdb4v4 ad17 io182npb4v3 ad18 io176ndb4v2 ad19 io176pdb4v2 ad20 io170ppb4v2 ad21 io166pdb4v1 ad22 vccib4 ad23 tck ad24 vcc ad25 trst ad26 vccib3 fg896 pin number a3pe3000 function ad27 gda0/io153ndb3v4 ad28 gdc0/io151ndb3v4 ad29 gdc1/io151pdb3v4 ad30 gnd ae1 io242ppb6v1 ae2 vcc ae3 io239pdb6v0 ae4 io239ndb6v0 ae5 vmv6 ae6 gnd ae7 gndq ae8 io230ndb5v4 ae9 io224npb5v3 ae10 io214npb5v2 ae11 io212ndb5v2 ae12 io212pdb5v2 ae13 io202npb5v1 ae14 io200ndb5v0 ae15 io196pdb5v0 ae16 io190ndb4v4 ae17 io184pdb4v3 ae18 io184ndb4v3 ae19 io172pdb4v2 ae20 io172ndb4v2 ae21 io166ndb4v1 ae22 io160pdb4v0 ae23 gndq ae24 vmv4 ae25 gnd ae26 gdb0/io152ndb3v4 ae27 gdb1/io152pdb3v4 ae28 vmv3 ae29 vcc ae30 io149pdb3v4 af1 gnd af2 io238ppb6v0 fg896 pin number a3pe3000 function af3 vccib6 af4 io220npb5v3 af5 vcc af6 io228ndb5v4 af7 vccib5 af8 io230pdb5v4 af9 io229ndb5v4 af10 io229pdb5v4 af11 io214ppb5v2 af12 io208ndb5v1 af13 io208pdb5v1 af14 io200pdb5v0 af15 io196ndb5v0 af16 io186ndb4v4 af17 io186pdb4v4 af18 io180ndb4v3 af19 io180pdb4v3 af20 io168ndb4v1 af21 io168pdb4v1 af22 io160ndb4v0 af23 io158npb4v0 af24 vccib4 af25 io154npb4v0 af26 vcc af27 tdo af28 vccib3 af29 gndq af30 gnd ag1 io238npb6v0 ag2 vcc ag3 io232npb5v4 ag4 gnd ag5 io220ppb5v3 ag6 io228pdb5v4 ag7 io231ndb5v4 ag8 gec2/io231pdb5v4 fg896 pin number a3pe3000 function
proasic3e flash family fpgas revision 13 4-43 ag9 io225npb5v3 ag10 io223npb5v3 ag11 io221pdb5v3 ag12 io221ndb5v3 ag13 io205npb5v1 ag14 io199ndb5v0 ag15 io199pdb5v0 ag16 io187ndb4v4 ag17 io187pdb4v4 ag18 io181ndb4v3 ag19 io171ppb4v2 ag20 io165npb4v1 ag21 io161npb4v0 ag22 io159ndb4v0 ag23 io159pdb4v0 ag24 io158ppb4v0 ag25 gdb2/io155pdb4v0 ag26 gda2/io154ppb4v0 ag27 gnd ag28 vjtag ag29 vcc ag30 io149ndb3v4 ah1 gnd ah2 io233npb5v4 ah3 vcc ah4 geb2/io232ppb5v4 ah5 vccib5 ah6 io219ndb5v3 ah7 io219pdb5v3 ah8 io227ndb5v4 ah9 io227pdb5v4 ah10 io225ppb5v3 ah11 io223ppb5v3 ah12 io211ndb5v2 ah13 io211pdb5v2 ah14 io205ppb5v1 fg896 pin number a3pe3000 function ah15 io195ndb5v0 ah16 io185ndb4v3 ah17 io185pdb4v3 ah18 io181pdb4v3 ah19 io177ndb4v2 ah20 io171npb4v2 ah21 io165ppb4v1 ah22 io161ppb4v0 ah23 io157ndb4v0 ah24 io157pdb4v0 ah25 io155ndb4v0 ah26 vccib4 ah27 tdi ah28 vcc ah29 vpump ah30 gnd aj1 gnd aj2 gnd aj3 gea2/io233ppb5v4 aj4 vcc aj5 io217npb5v2 aj6 vcc aj7 io215npb5v2 aj8 io213ndb5v2 aj9 io213pdb5v2 aj10 io209ndb5v1 aj11 io209pdb5v1 aj12 io203ndb5v1 aj13 io203pdb5v1 aj14 io197ndb5v0 aj15 io195pdb5v0 aj16 io183ndb4v3 aj17 io183pdb4v3 aj18 io179npb4v3 aj19 io177pdb4v2 aj20 io173ndb4v2 fg896 pin number a3pe3000 function aj21 io173pdb4v2 aj22 io163ndb4v1 aj23 io163pdb4v1 aj24 io167npb4v1 aj25 vcc aj26 io156npb4v0 aj27 vcc aj28 tms aj29 gnd aj30 gnd ak2 gnd ak3 gnd ak4 io217ppb5v2 ak5 gnd ak6 io215ppb5v2 ak7 gnd ak8 io207ndb5v1 ak9 io207pdb5v1 ak10 io201ndb5v0 ak11 io201pdb5v0 ak12 io193ndb4v4 ak13 io193pdb4v4 ak14 io197pdb5v0 ak15 io191ndb4v4 ak16 io191pdb4v4 ak17 io189ndb4v4 ak18 io189pdb4v4 ak19 io179ppb4v3 ak20 io175ndb4v2 ak21 io175pdb4v2 ak22 io169ndb4v1 ak23 io169pdb4v1 ak24 gnd ak25 io167ppb4v1 ak26 gnd ak27 gdc2/io156ppb4v0 fg896 pin number a3pe3000 function
package pin assignments 4-44 revision 13 ak28 gnd ak29 gnd b1 gnd b2 gnd b3 gaa2/io309ppb7v4 b4 vcc b5 io14ppb0v1 b6 vcc b7 io07ppb0v0 b8 io09pdb0v1 b9 io15ppb0v1 b10 io19ndb0v2 b11 io19pdb0v2 b12 io29ndb0v3 b13 io29pdb0v3 b14 io31ppb0v3 b15 io37ndb0v4 b16 io37pdb0v4 b17 io41pdb1v0 b18 io51ndb1v1 b19 io59pdb1v2 b20 io53pdb1v1 b21 io53ndb1v1 b22 io61ndb1v2 b23 io61pdb1v2 b24 io69npb1v3 b25 vcc b26 gbc0/io79npb1v4 b27 vcc b28 io64npb1v2 b29 gnd b30 gnd c1 gnd c2 io309npb7v4 c3 vcc c4 gaa0/io00npb0v0 fg896 pin number a3pe3000 function c5 vccib0 c6 io03pdb0v0 c7 io03ndb0v0 c8 gab1/io01pdb0v0 c9 io05pdb0v0 c10 io15npb0v1 c11 io25ndb0v3 c12 io25pdb0v3 c13 io31npb0v3 c14 io27ndb0v3 c15 io39ndb0v4 c16 io39pdb0v4 c17 io55ppb1v1 c18 io51pdb1v1 c19 io59ndb1v2 c20 io63ndb1v2 c21 io63pdb1v2 c22 io67ndb1v3 c23 io67pdb1v3 c24 io75ndb1v4 c25 io75pdb1v4 c26 vccib1 c27 io64ppb1v2 c28 vcc c29 gba1/io81ppb1v4 c30 gnd d1 io303ppb7v3 d2 vcc d3 io305npb7v3 d4 gnd d5 gaa1/io00ppb0v0 d6 gac1/io02pdb0v0 d7 io06npb0v0 d8 gab0/io01ndb0v0 d9 io05ndb0v0 d10 io11ndb0v1 fg896 pin number a3pe3000 function d11 io11pdb0v1 d12 io23ndb0v2 d13 io23pdb0v2 d14 io27pdb0v3 d15 io40pdb0v4 d16 io47ndb1v0 d17 io47pdb1v0 d18 io55npb1v1 d19 io65ndb1v3 d20 io65pdb1v3 d21 io71ndb1v3 d22 io71pdb1v3 d23 io73ndb1v4 d24 io73pdb1v4 d25 io74ndb1v4 d26 gbb0/io80npb1v4 d27 gnd d28 gba0/io81npb1v4 d29 vcc d30 gba2/io82ppb2v0 e1 gnd e2 io303npb7v3 e3 vccib7 e4 io305ppb7v3 e5 vcc e6 gac0/io02ndb0v0 e7 vccib0 e8 io06ppb0v0 e9 io24ndb0v2 e10 io24pdb0v2 e11 io13ndb0v1 e12 io13pdb0v1 e13 io34ndb0v4 e14 io34pdb0v4 e15 io40ndb0v4 e16 io49ndb1v1 fg896 pin number a3pe3000 function
proasic3e flash family fpgas revision 13 4-45 e17 io49pdb1v1 e18 io50pdb1v1 e19 io58pdb1v2 e20 io60ndb1v2 e21 io77pdb1v4 e22 io68ndb1v3 e23 io68pdb1v3 e24 vccib1 e25 io74pdb1v4 e26 vcc e27 gbb1/io80ppb1v4 e28 vccib2 e29 io82npb2v0 e30 gnd f1 io296ppb7v2 f2 vcc f3 io306pdb7v4 f4 io297pdb7v2 f5 vmv7 f6 gnd f7 gndq f8 io12ndb0v1 f9 io12pdb0v1 f10 io10pdb0v1 f11 io16pdb0v1 f12 io22ndb0v2 f13 io30ndb0v3 f14 io30pdb0v3 f15 io36pdb0v4 f16 io48ndb1v0 f17 io48pdb1v0 f18 io50ndb1v1 f19 io58ndb1v2 f20 io60pdb1v2 f21 io77ndb1v4 f22 io72ndb1v3 fg896 pin number a3pe3000 function f23 io72pdb1v3 f24 gndq f25 gnd f26 vmv2 f27 io86pdb2v0 f28 io92pdb2v1 f29 vcc f30 io100npb2v2 g1 gnd g2 io296npb7v2 g3 io306ndb7v4 g4 io297ndb7v2 g5 vccib7 g6 gndq g7 vcc g8 vmv0 g9 vccib0 g10 io10ndb0v1 g11 io16ndb0v1 g12 io22pdb0v2 g13 io26ppb0v3 g14 io38npb0v4 g15 io36ndb0v4 g16 io46ndb1v0 g17 io46pdb1v0 g18 io56ndb1v1 g19 io56pdb1v1 g20 io66ndb1v3 g21 io66pdb1v3 g22 vccib1 g23 vmv1 g24 vcc g25 gndq g26 vccib2 g27 io86ndb2v0 g28 io92ndb2v1 fg896 pin number a3pe3000 function g29 io100ppb2v2 g30 gnd h1 io294pdb7v2 h2 io294ndb7v2 h3 io300ndb7v3 h4 io300pdb7v3 h5 io295pdb7v2 h6 io299pdb7v3 h7 vcompla h8 gnd h9 io08ndb0v0 h10 io08pdb0v0 h11 io18pdb0v2 h12 io26npb0v3 h13 io28ndb0v3 h14 io28pdb0v3 h15 io38ppb0v4 h16 io42ndb1v0 h17 io52ndb1v1 h18 io52pdb1v1 h19 io62ndb1v2 h20 io62pdb1v2 h21 io70ndb1v3 h22 io70pdb1v3 h23 gnd h24 vcomplb h25 gbc2/io84pdb2v0 h26 io84ndb2v0 h27 io96pdb2v1 h28 io96ndb2v1 h29 io89pdb2v0 h30 io89ndb2v0 j1 io290ndb7v2 j2 io290pdb7v2 j3 io302ndb7v3 j4 io302pdb7v3 fg896 pin number a3pe3000 function
package pin assignments 4-46 revision 13 j5 io295ndb7v2 j6 io299ndb7v3 j7 vccib7 j8 vccpla j9 vcc j10 io04npb0v0 j11 io18ndb0v2 j12 io20ndb0v2 j13 io20pdb0v2 j14 io32ndb0v3 j15 io32pdb0v3 j16 io42pdb1v0 j17 io44ndb1v0 j18 io44pdb1v0 j19 io54ndb1v1 j20 io54pdb1v1 j21 io76npb1v4 j22 vcc j23 vccplb j24 vccib2 j25 io90pdb2v1 j26 io90ndb2v1 j27 gbb2/io83pdb2v0 j28 io83ndb2v0 j29 io91pdb2v1 j30 io91ndb2v1 k1 io288ndb7v1 k2 io288pdb7v1 k3 io304ndb7v3 k4 io304pdb7v3 k5 gab2/io308pdb7v4 k6 io308ndb7v4 k7 io301pdb7v3 k8 io301ndb7v3 k9 gac2/io307ppb7v4 k10 vcc fg896 pin number a3pe3000 function k11 io04ppb0v0 k12 vccib0 k13 vccib0 k14 vccib0 k15 vccib0 k16 vccib1 k17 vccib1 k18 vccib1 k19 vccib1 k20 io76ppb1v4 k21 vcc k22 io78ppb1v4 k23 io88ndb2v0 k24 io88pdb2v0 k25 io94pdb2v1 k26 io94ndb2v1 k27 io85pdb2v0 k28 io85ndb2v0 k29 io93pdb2v1 k30 io93ndb2v1 l1 io286ndb7v1 l2 io286pdb7v1 l3 io298ndb7v3 l4 io298pdb7v3 l5 io283pdb7v1 l6 io291ndb7v2 l7 io291pdb7v2 l8 io293pdb7v2 l9 io293ndb7v2 l10 io307npb7v4 l11 vcc l12 vcc l13 vcc l14 vcc l15 vcc l16 vcc fg896 pin number a3pe3000 function l17 vcc l18 vcc l19 vcc l20 vcc l21 io78npb1v4 l22 io104npb2v2 l23 io98ndb2v2 l24 io98pdb2v2 l25 io87pdb2v0 l26 io87ndb2v0 l27 io97pdb2v1 l28 io101pdb2v2 l29 io103pdb2v2 l30 io119ndb3v0 m1 io282ndb7v1 m2 io282pdb7v1 m3 io292ndb7v2 m4 io292pdb7v2 m5 io283ndb7v1 m6 io285pdb7v1 m7 io287pdb7v1 m8 io289pdb7v1 m9 io289ndb7v1 m10 vccib7 m11 vcc m12 gnd m13 gnd m14 gnd m15 gnd m16 gnd m17 gnd m18 gnd m19 gnd m20 vcc m21 vccib2 m22 nc fg896 pin number a3pe3000 function
proasic3e flash family fpgas revision 13 4-47 m23 io104ppb2v2 m24 io102pdb2v2 m25 io102ndb2v2 m26 io95pdb2v1 m27 io97ndb2v1 m28 io101ndb2v2 m29 io103ndb2v2 m30 io119pdb3v0 n1 io276pdb7v0 n2 io278pdb7v0 n3 io280pdb7v0 n4 io284pdb7v1 n5 io279pdb7v0 n6 io285ndb7v1 n7 io287ndb7v1 n8 io281ndb7v0 n9 io281pdb7v0 n10 vccib7 n11 vcc n12 gnd n13 gnd n14 gnd n15 gnd n16 gnd n17 gnd n18 gnd n19 gnd n20 vcc n21 vccib2 n22 io106ndb2v3 n23 io106pdb2v3 n24 io108pdb2v3 n25 io108ndb2v3 n26 io95ndb2v1 n27 io99ndb2v2 n28 io99pdb2v2 fg896 pin number a3pe3000 function n29 io107pdb2v3 n30 io107ndb2v3 p1 io276ndb7v0 p2 io278ndb7v0 p3 io280ndb7v0 p4 io284ndb7v1 p5 io279ndb7v0 p6 gfc1/io275pdb7v0 p7 gfc0/io275ndb7v0 p8 io277pdb7v0 p9 io277ndb7v0 p10 vccib7 p11 vcc p12 gnd p13 gnd p14 gnd p15 gnd p16 gnd p17 gnd p18 gnd p19 gnd p20 vcc p21 vccib2 p22 gcc1/io112pdb2v3 p23 io110pdb2v3 p24 io110ndb2v3 p25 io109ppb2v3 p26 io111npb2v3 p27 io105pdb2v2 p28 io105ndb2v2 p29 gcc2/io117pdb3v0 p30 io117ndb3v0 r1 gfc2/io270pdb6v4 r2 gfb1/io274ppb7v0 r3 vcomplf r4 gfa0/io273ndb6v4 fg896 pin number a3pe3000 function r5 gfb0/io274npb7v0 r6 io271ndb6v4 r7 gfb2/io271pdb6v4 r8 io269pdb6v4 r9 io269ndb6v4 r10 vccib7 r11 vcc r12 gnd r13 gnd r14 gnd r15 gnd r16 gnd r17 gnd r18 gnd r19 gnd r20 vcc r21 vccib2 r22 gcc0/io112ndb2v3 r23 gcb2/io116pdb3v0 r24 io118pdb3v0 r25 io111ppb2v3 r26 io122ppb3v1 r27 gca0/io114npb3v0 r28 vcomplc r29 gcb1/io113ppb2v3 r30 io115npb3v0 t1 io270ndb6v4 t2 vccplf t3 gfa2/io272ppb6v4 t4 gfa1/io273pdb6v4 t5 io272npb6v4 t6 io267ndb6v4 t7 io267pdb6v4 t8 io265pdb6v3 t9 io263pdb6v3 t10 vccib6 fg896 pin number a3pe3000 function
package pin assignments 4-48 revision 13 t11 vcc t12 gnd t13 gnd t14 gnd t15 gnd t16 gnd t17 gnd t18 gnd t19 gnd t20 vcc t21 vccib3 t22 io109npb2v3 t23 io116ndb3v0 t24 io118ndb3v0 t25 io122npb3v1 t26 gca1/io114ppb3v0 t27 gcb0/io113npb2v3 t28 gca2/io115ppb3v0 t29 vccplc t30 io121pdb3v0 u1 io268pdb6v4 u2 io264ndb6v3 u3 io264pdb6v3 u4 io258pdb6v3 u5 io258ndb6v3 u6 io257ppb6v2 u7 io261ppb6v3 u8 io265ndb6v3 u9 io263ndb6v3 u10 vccib6 u11 vcc u12 gnd u13 gnd u14 gnd u15 gnd u16 gnd fg896 pin number a3pe3000 function u17 gnd u18 gnd u19 gnd u20 vcc u21 vccib3 u22 io120pdb3v0 u23 io128pdb3v1 u24 io124pdb3v1 u25 io124ndb3v1 u26 io126pdb3v1 u27 io129pdb3v1 u28 io127pdb3v1 u29 io125pdb3v1 u30 io121ndb3v0 v1 io268ndb6v4 v2 io262pdb6v3 v3 io260pdb6v3 v4 io252pdb6v2 v5 io257npb6v2 v6 io261npb6v3 v7 io255pdb6v2 v8 io259pdb6v3 v9 io259ndb6v3 v10 vccib6 v11 vcc v12 gnd v13 gnd v14 gnd v15 gnd v16 gnd v17 gnd v18 gnd v19 gnd v20 vcc v21 vccib3 v22 io120ndb3v0 fg896 pin number a3pe3000 function v23 io128ndb3v1 v24 io132pdb3v2 v25 io130ppb3v2 v26 io126ndb3v1 v27 io129ndb3v1 v28 io127ndb3v1 v29 io125ndb3v1 v30 io123pdb3v1 w1 io266ndb6v4 w2 io262ndb6v3 w3 io260ndb6v3 w4 io252ndb6v2 w5 io251ndb6v2 w6 io251pdb6v2 w7 io255ndb6v2 w8 io249ppb6v1 w9 io253pdb6v2 w10 vccib6 w11 vcc w12 gnd w13 gnd w14 gnd w15 gnd w16 gnd w17 gnd w18 gnd w19 gnd w20 vcc w21 vccib3 w22 io134pdb3v2 w23 io138pdb3v3 w24 io132ndb3v2 w25 io136npb3v2 w26 io130npb3v2 w27 io141pdb3v3 w28 io135pdb3v2 fg896 pin number a3pe3000 function
proasic3e flash family fpgas revision 13 4-49 w29 io131pdb3v2 w30 io123ndb3v1 y1 io266pdb6v4 y2 io250pdb6v2 y3 io250ndb6v2 y4 io246pdb6v1 y5 io247ndb6v1 y6 io247pdb6v1 y7 io249npb6v1 y8 io245pdb6v1 y9 io253ndb6v2 y10 geb0/io235npb6v0 y11 vcc y12 vcc y13 vcc y14 vcc y15 vcc y16 vcc y17 vcc y18 vcc y19 vcc y20 vcc y21 io142ppb3v3 y22 io134ndb3v2 y23 io138ndb3v3 y24 io140ndb3v3 y25 io140pdb3v3 y26 io136ppb3v2 y27 io141ndb3v3 y28 io135ndb3v2 y29 io131ndb3v2 y30 io133pdb3v2 fg896 pin number a3pe3000 function

revision 13 5-1 5 ? datasheet information list of changes the following table lists critical changes that were made in each revision of the proasic3e datasheet. revision changes page revision 13 (january 2013) in the "features and benefits" section , updated the clock conditioning circuit (ccc) and pll wide input frequency range from ?1.5 mhz to 200 mhz? to ?1.5mhz to 350 mhz? based on table 2-98 ? proasic3e ccc/pll specification (sar 22196). 1-i the "proasic3e ordering information" section has been updated to mention "y" as "blank" mentioning "device does not include license to implement ip based on the cryptography research, inc. (cri) patent portfolio" (sar 43220). 1-iii added a note to table 2-2 ? recommended operating conditions 1 (sar 42716): the programming temperatur e range supported is t ambient = 0c to 85c. 2-2 the note in table 2-98 ? proasic3e ccc/pll specification referring the reader to smartgen was revised to refer instead to the online help associated with the core (sar 42571). 2-69 libero integrated design environment (ide ) was changed to libero system-on- chip (soc) throughout the document (sar 40285). live at power-up (lapu) has been replaced with ?instant on?. na revision 12 (september 2012) the "security" section was modified to clarif y that microsemi does not support read-back of programmed data. 1-1 revision 11 (august 2012) added a note stating " vmv pins must be connected to the corresponding vcci pins. see the "vmvx i/o supply voltage (quiet)" section on page 3-1 for further information. " to table 2-1 ? absolute maximum ratings and ta b l e 2 - 2 ? recommended operating conditions 1 (sar 38322). 2-1 2-2 the drive strength, iol, and ioh value for 3.3 v gtl and 2.5 v gtl was changed from 25 ma to 20 ma in the following tables (sar 31924): table 2-13 ? summary of maximum and minimum dc input and output levels table 2-17 ? summary of i/o timing char acteristics?software default settings table 2-19 ? i/o output bu ffer maximum resistances1 table 2-48 ? minimum and maximum dc input and output levels (3.3 v gtl) table 2-51 ? minimum and maximum dc input and output levels (2.5 v gtl) also added note stating "out put drive strength is below jedec specification." for tables 2-17 and 2-19. additionally, the iol and ioh values for 3.3 v gtl+ and 2.5 v gtl+ were corrected from 51 to 35 (for 3.3 v gtl+ ) and from 40 to 33 (for 2.5 v gtl+) in table ta b l e 2 - 1 3 (sar 39714). 2-16 2-19 2-20 2-38 2-39 table 2-22 ? duration of short circuit event before failure was revised to change the maximum temperature from 110c to 100c, with an example of six months instead of three months (sar 37934). 2-22 the following sentence was deleted from the "2.5 v lvcmos" section (sar 34796): "it uses a 5 v?tolerant input buffer and push-pull output buffer." this change was made in revision 10 and omitted from the change table in error. 2-29
datasheet information 5-2 revision 13 revision 11 (continued) figure 2-11 ? ac loading was updated to match tables in the "summary of i/o timing characteristics ? default i/o software settings" section (sar 34889). 2-37 in table 2-81 ? minimum and maximum dc input and output levels , vil and vih were revised so that the maximum is 3.6 v for all listed values of vcci (sar 37222). 2-51 figure 2-47 ? fifo read and figure 2-48 ? fifo write are new (sar 34848). 2-78 the following sentence was removed from the "vmvx i/o supply voltage (quiet)" section in the "pin descriptions and packaging" chapter: "within the package, the vmv plane is decoupled from the simultaneous switching noise originating from the output buffer vcci domain" and repl aced with ?within t he package, the vmv plane biases the input stage of the i/os in the i/o banks? (sar 38322). the datasheet mentions that "vmv pins mu st be connected to the corresponding vcci pins" for an esd enhancement. 3-1 revision 10 (march 2012) the "in-system programming (isp) and security" section and "security" section were revised to clarify that although no existing security measures can give an absolute guarantee, microsemi fpgas implement the best security available in the industry (sar 34669). i , 1-1 the y security option and licensed dpa logo were added to the "proasic3e ordering information" section . the trademarked licensed dpa logo identifies that a product is covered by a dpa counter-measures license from cryptography research (sar 34727). iii the following sentence was removed from the "advanced architecture" section : "in addition, extensive on-chip programming circuitry allows for rapid, single- voltage (3.3 v) programming of ig looe devices via an ieee 1532 jtag interface" (sar 34689). 1-3 the "specifying i/o states during programming" section is new (sar 34699). 1-6 vccpll in table 2-2 ? recommended operating conditions 1 was corrected from "1.4 to 1.6 v" to "1.425 to 1.575 v" (sar 33851). the t j symbol was added to the table and notes regarding t a and t j were removed. the second of two parameters in the vcci and vmv row, called "3.3 v dc supply voltage," was corrected to "3.0 v dc supply voltage" (sar 37227). 2-2 the reference to guidelines for global spines and versatile rows, given in the "global clock contribution?pclock" section , was corrected to t he "spine architecture" section of the global resources chapter in the proasic3e fpga fabric user's guide (sar 34735). 2-9 t dout was corrected to t din in figure 2-3 ? input buffer timing model and delays (example) (sar 37109). 2-13 the typo related to the values for 3.3 v lvcmos wide range in table 2-17 ? summary of i/o timing characteristics?software default settings was corrected (sar 37227). 2-19 the notes regarding drive strength in the "summary of i/o timing characteristics ? default i/o software settings" section and "3.3 v lvcmos wide range" section and tables were revised for clarificat ion. they now state that the minimum drive strength for the default software configuration when run in wide range is 100 a. the drive strength displayed in software is supported in normal range only. for a detailed i/v curve, refer to the ibis models (sar 34763). 2-18 , 2-26 revision changes page
proasic3e flash family fpgas revision 13 5-3 revision 10 (continued) "tbd" for 3.3 v lvcmos wide range in table 2-19 ? i/o output buffer maximum resistances1 and table 2-21 ? i/o short currents iosh/iosl was replaced by "same as regular 3.3 v lvcmos" (sar 33853). 3.3 v lvcmos wide range information was separated from regular 3.3 v lvcmos and placed into its own new section, "3.3 v lvcmos wide range" . values of iosh and iosl were added in table 2-29 ? minimum and maximum dc input and output levels (sar 33853). 2-20 , 2-22 the formulas in the table notes for table 2-20 ? i/o weak pull-up/pull-down resistances were corrected (sar 34755). 2-21 the ac loading figures in the "single-ended i/o characteristics" section were updated to match tables in the "summary of i/o timing characteristics ? default i/o software settings" section (sar 34889). 2-24 the titles and subtitles for table 2-31 ? 3.3 v lvcmos wide range high slew and table 2-32 ? 3.3 v lvcmos wide range low slew were corrected (sar 37227). 2-27 , 2-28 the following notes were removed from table 2-78 ? lvds minimum and maximum dc input and output levels (sar 34812): 5% differential input voltage = 350 mv 2-49 minimum pulse width high and low values were added to the tables in the "global tree timing char acteristics" section . the maximum frequency for global clock parameter was removed from thes e tables because a frequency on the global is only an indication of what t he global network can do. there are other limiters such as the sram, i/os, and pll. smarttime software should be used to determine the design frequency (sar 36957). 2-67 a note was added to table 2-98 ? proasic3e ccc/pll specification indicating that when the ccc/pll core is generated by microsemi core generator software, not all delay values of the specified del ay increments are available (sar 34824). 2-69 the following figures were deleted. reference was made to a new application note, simultaneous read-write operations in dual-port sram for flash-based csocs and fpga s , which covers these cases in detail (sar 34872). figure 2-44 ? write access after write onto same address figure 2-45 ? read access after write onto same address figure 2-46 ? write access after read onto same address the port names in the sram "timing waveforms" , sram "timing characteristics" tables, figure 2-49 ? fifo reset , and the fifo "timing characteristics" tables were revised to ensure consistency with the software names (sar 35750). 2-72 , 2-75 , 2-79 , 2-81 the "pin descriptions and packaging" chapter is new (sar 34771). 3-1 package names used in the "package pin assignments" section were revised to match standards given in package mechanical drawings (sar 34771). 4-1 pin e6 for the fg256 package was corrected from vvb0 to vccib0 (sars 30364, 31597, 26243). 4-9 july 2010 the versioning system for datasheets has been changed. datasheets are assigned a revision number that increm ents each time the datasheet is revised. the "proasic3e device status" table on page ii indicates the status for each device in the device family. n/a revision changes page
datasheet information 5-4 revision 13 revision changes page revision 9 (aug 2009) product brief v1.2 all references to speed grade ?f have been removed from this document. n/a the "pro i/os with advanced i/o standards" section was revised to add definitions of hot-swap and cold-sparing. 1-6 dc and switching characteristics v1.3 3.3 v lvcmos and 1.2 v lvcmos wide range support was added to the datasheet. this affects all tables t hat contained 3.3 v lvcmos and 1.2 v lvcmos data. n/a iil and iih input leakage current information was added to all "minimum and maximum dc input and output levels" tables. n/a ?f was removed from the datasheet. t he speed grade is no longer supported. n/a in the table 2-2 ? recommended operating conditions 1 "3.0 v dc supply voltage" and note 4 are new. 2-2 the table 2-4 ? overshoot and undershoot limits 1 table was updated. 2-3 the table 2-6 ? temperature and voltage derating factors for timing delays table was updated. 2-5 there are new parameters and data was updated in the table 2-99 ? ram4k9 table. 2-75 there are new parameters and data was updated in the table 2-100 ? ram512x18 table. 2-76 revision 8 (feb 2008) product brief v1.1 table 1-2 ? proasic3e fpgas package sizes dimensions is new. 1-ii revision 7 (jun 2008) dc and switching characteristics v1.2 the title of table 2-4 ? overshoot and undershoot limits 1 was modified to remove "as measured on quiet i/os." table note 2 was revised to remove "estimated sso dens ity over cycles." table note 3 was deleted . 2-3 table 2-78 ? lvds minimum and maximum dc input and output levels was updated. 2-49 revision 6 (jun 2008) the a3pe600 "fg484" table was missing g22. the pin and its function were added to the table. 4-17 revision 5 (jun 2008) packaging v1.4 the naming conventions changed for the following pins in the "fg484" for the a3pe600: pin number new function name j19 io45ppb2v1 k20 io45npb2v1 m2 io114npb6v1 n1 io114ppb6v1 n4 gfc2/io115ppb6v1 p3 io115npb6v1 4-17 revision 4 (apr 2008) product brief v1.0 the product brief portion of the datasheet was divided into two sections and given a version number, starting at v1.0. the first section of the document includes features, benefits, order ing information, and temperature and speed grade offerings. the second section is a device family overview. n/a packaging v1.3 the "fg324" package diagram was replaced. 4-12
proasic3e flash family fpgas revision 13 5-5 revision 3 (apr 2008) packaging v1.2 the following pins had duplicates and the extra pins were deleted from the "pq208" a3pe3000 table: 36, 62, 171 note: there were no pin function changes in this update. 4-6 the following pins had duplicates and the extra pins were deleted from the "fg324" table: e2, e3, e16, e17, p2, p3, t16, u17 note: there were no pin function changes in this update. 4-12 the "fg256" pin table was updated for the a3pe600 device because the old pat were based on the ifx die, and this is the final umc die version. 4-9 the "fg484" was updated for the a3pe600 device because the old pat were based on the ifx die, and this is the final umc die version. 4-17 the following pins had duplicates and the extra pins were deleted from the "fg896" table: ad6, ae5, ae28, af29, f5, f26, g6, g25 note: there were no pin function changes in this update. 4-41 revision 2 (mar 2008) product brief rev. 1 the fg324 package was added to the "proasic3e product family" table, the "i/os per package1" table, and the "temperature grade offerings" table for a3pe3000. i , ii , iv revision 1 (feb 2008) dc and switching characteristics v1.1 in table 2-3 ? flash programming limits ? retention, storage and operating temperature 1 , maximum operating junction temperature was changed from 110c to 100c for both commercial and industrial grades. 2-2 the "pll behavior at brownout condition" section is new. 2-4 in the "pll contribution?ppll" section , the following was deleted: fclkin is the input clock frequency. 2-10 in table 2-14 ? summary of maximum and minimum dc input levels , the note was incorrect. it previously said t j and it was corrected and changed to t a . 2-17 in table 2-98 ? proasic3e ccc/pll specification , the sclk parameter and note 1 are new. 2-69 table 2-103 ? jtag 1532 was populated with the parameter data, which was not in the previous version of the document. 2-82 revision 1 (cont?d) packaging v1.1 the "pq208" pin table for a3pe3000 was updated. 4-6 the "fg324" pin table for a3pe3000 is new. 4-13 the "fg484" pin table for a3pe3000 is new. 4-27 the "fg896" pin table for a3pe3000 is new. 4-41 revision 0 (jan 2008) this document was previously in datasheet v2.1. as a result of moving to the handbook format, actel has restarted th e version numbers. the new version number is 51700098-001-0. n/a v2.1 (july 2007) coremp7 information was removed from the "features and benefits" section. i the m1 device part numbers have been updated in table 4 ? proasic3e product family, "packaging tables", "temperature grade offerings", "speed grade and temperature grade matrix", and "speed grade and temperature grade matrix". ii, iii, iv, iv revision changes page
datasheet information 5-6 revision 13 v2.1 (continued) the words "ambient temperature" were added to the temperature range in the "temperature grade offerings", "speed grade and temperature grade matrix", and "speed grade and temper ature grade matrix" sections. iii, iv, iv the "clock conditioning circuit (ccc) and pll" section was updated. i the caption "main (chip)" in figure 2-9 ? overview of automotive proasic3 versanet global network was changed to "chip (main)." 2-9 the t j parameter in table 3-2 ? recommended operating conditions was changed to t a , ambient temperature, and table notes 4?6 were added. 3-2 the "pll macro" section was updated to add information on the vco and pll outputs during power-up. 2-15 v2.0 (april 2007) in the "temperature grade offerings " section, ambient was deleted. iii ambient was deleted from "temperature grade offerings". iii ambient was deleted from the "speed gr ade and temperature grade matrix". iv the "pll macro" section was updated to include power-up information. 2-15 table 2-13 ? proasic3e ccc/pll specification was updated. 2-30 figure 2-19 ? peak-to-peak jitter definition is new. 2-18 the "sram and fifo" section was updated with operation and timing requirement information. 2-21 the "reset" section was updated with read and write information. 2-25 the "reset" section was updated with read and write information. 2-25 the "introduction" in the "advanced i/os" section was updated to include information on input and output buffers being disabled. 2-28 in the table 2-15 ? levels of hot-swap support, the proasic3 compliance descriptions were updated for levels 3 and 4. 2-34 table 2-45 ? i/o hot-swap and 5 v input tolerance capabilities in proasic3e devices was updated. 2-64 notes 3, 4, and 5 were added to table 2-17 ? comparison table for 5 v? compliant receiver scheme. 5 x 52.72 was changed to 52.7 and the maximum current was updated from 4 x 52.7 to 5 x 52.7. 2-40 the "vccplf pll supply voltage" section was updated. 2-50 the "vpump programming supply voltage" section was updated. 2-50 the "gl globals" section was updated to include information about direct input into quadr ant clocks. 2-51 vjtag was deleted from the "tck test clock" section. 2-51 in table 2-22 ? recommended tie-off values for the tck and trst pins, tsk was changed to tck in note 2. note 3 was also updated. 2-51 ambient was deleted from table 3-2 ? recommended operating conditions. vpump programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45". 3-2 note 3 is new in table 3-4 ? overshoot and undershoot limits (as measured on quiet i/os). 3-2 in eq 3-2, 150 was changed to 110 and the result changed to 5.88. 3-5 revision changes page
proasic3e flash family fpgas revision 13 5-7 v2.0 (continued) table 3-6 ? temperature and voltage derating factors for timing delays was updated. 3-5 table 3-5 ? package thermal re sistivities wa s updated. 3-5 table 3-10 ? different components contributing to the dynamic power consumption in proasic3e devices was updated. 3-8 t wro and t cckh were added to table 3-94 ? ram4k9 and table 3-95 ? ram512x18. 3-74 to 3-74 the note in table 3-24 ? i/o input rise time, fall time, and related i/o reliability was updated. 3-23 figure 3-43 ? write access after write onto same address, figure 3-44 ? read access after write onto same address, and figure 3-45 ? write access after read onto same address are new. 3-71 to 3- 73 figure 3-53 ? timing diagram was updated. 3-80 notes were added to the package diagrams i dentifying if they were top or bottom view. n/a the a3pe1500 "208-pin pqfp" table is new. 4-4 the a3pe1500 "484-pin fbga" table is new. 4-18 the a3pe1500 "a3pe1500 function" table is new. 4-24 advance v0.6 (january 2007) in the "packaging tables" table, the number of i/os for the a3pe1500 was changed for the fg484 and fg676 packages. ii advance v0.5 (april 2006) b-lvds and m-ldvs are new i/o standards added to the datasheet. n/a the term flow-through was changed to pass-through. n/a figure 2-8 ? very-long-line resources was updated. 2-8 the footnotes in figure 2-27 ? ccc/pll macro were updated. 2-28 the delay increments in the programmabl e delay blocks specification in figure 2-24 ? proasic3e ccc options. 2-24 the "sram and fifo" section was updated. 2-21 the "reset" section was updated. 2-25 the "wclk and rclk" section was updated. 2-25 the "reset" section was updated. 2-25 the "reset" section was updated. 2-27 b-lvds and m-ldvs are new i/o standards added to the datasheet. n/a the term flow-through was changed to pass-through. n/a figure 2-8 ? very-long-line resources was updated. 2-8 the footnotes in figure 2-27 ? ccc/pll macro were updated. 2-28 the delay increments in the programmabl e delay blocks specification in figure 2-24 ? proasic3e ccc options. 2-24 the "sram and fifo" section was updated. 2-21 the "reset" section was updated. 2-25 the "wclk and rclk" section was updated. 2-25 revision changes page
datasheet information 5-8 revision 13 advance v0.5 (continued) the "reset" section was updated. 2-25 the "reset" section was updated. 2-27 the "introduction" of the "intr oduction" section was updated. 2-28 pci-x 3.3 v was added to the compatible standards for 3.3 v in table 2- 11 ? vcci voltages and compatible standards 2-29 table 2-35 ? proasic3e i/o features was updated. 2-54 the "double data rate (ddr) support" section was updated to include information concerning impl ementation of the feature. 2-32 the "electrostatic discharge (esd) protection" section was updated to include testing information. 2-35 level 3 and 4 descriptions were updated in table 2-43 ? i/o hot-swap and 5 v input tolerance capabilities in proasic3 devices. 2-64 the notes in table 2-45 ? i/o hot-swap and 5 v input tolerance capabilities in proasic3e devices were updated. 2-64 the "simultaneous switching outputs (sso s) and printed circuit board layout" section is new. 2-41 a footnote was added to table 2-37 ? maximum i/o frequency for single-ended and differential i/os in all banks in proasic3e devices (maximum drive strength and high slew selected). 2-55 table 2-48 ? proasic3e i/o attributes vs. i/o standard applications 2-81 table 2-55 ? proasic3 i/o standards?slew and output drive (out_drive) settings 2-85 the "x" was updated in the "pin descriptions" section. 2-50 the "vcc core supply voltage" pin description was updated. 2-50 the "vmvx i/o supply voltage (quiet)" pin description was updated to include information concerning leav ing the pin unconnected. 2-50 extfb was removed from figure 2-24 ? proasic3e ccc options. 2-24 the ccc output peak-to-peak period jitter f ccc_out was updated in table 2-13 ? proasic3e ccc/pll specification. 2-30 extfb was removed from figure 2-27 ? ccc/pll macro. 2-28 the lvpecl specification in table 2-45 ? i/o hot-swap and 5 v input tolerance capabilities in proasic3e devices was updated. 2-64 table 2-15 ? levels of hot-swap support was updated. 2-34 the "cold-sparing support" section was updated. 2-34 "electrostatic discharge (esd) pr otection" section was updated. 2-35 the vjtag and i/o pin descriptions were updated in the "pin descriptions" section. 2-50 the "vjtag jtag supply voltage" pin description was updated. 2-50 the "vpump programming supply voltage" pin description was updated to include information on what happens when the pin is tied to ground. 2-50 revision changes page
proasic3e flash family fpgas revision 13 5-9 advance v0.5 (continued) the "i/o user input/output " pin description was updated to include information on what happens when the pin is unused. 2-50 the "jtag pins" section was updated to include information on what happens when the pin is unused. 2-51 the "programming" section was updated to include information concerning serialization. 2-53 the "jtag 1532" section was updated to include sample/preload information. 2-54 the "dc and switching characterist ics" chapter was updated with new information. starting on page 3-1 table 3-6 was updated. 3-5 in table 3-10, pac4 was updated. 3-8 table 3-19 was updated. 3-20 the note in table 3-24 was updated. 3-23 all timing characteristics tables were updat ed from lvttl to register delays 3-26 to 3-64 the timing characteristics for ram4k9, ram512x18, and fifo were updated. 3-74 to 3-79 f tckmax was updated in table 3-98. 3-80 advance v0.4 (october 2005) the "packaging tables" table was updated. ii advance v0.3 figure 2-11 was updated. 2-9 the "clock resources (versanets)" section was updated. 2-9 the "versanet global networks and spine access" section was updated. 2-9 the "pll macro" section was updated. 2-15 figure 2-27 was updated. 2-28 figure 2-20 was updated. 2-19 table 2-5 was updated. 2-25 table 2-6 was updated. 2-25 the "fifo flag usage considerations" section was updated. 2-27 table 2-33 was updated. 2-51 figure 2-24 was updated. 2-31 the "cold-sparing support" section is new. 2-34 table 2-45 was updated. 2-64 table 2-48 was updated. 2-81 pin descriptions in the "jtag pins" section were updated. 2-51 the "pin descriptions" section was updated. 2-50 table 3-7 was updated. 3-6 revision changes page
datasheet information 5-10 revision 13 advance v0.3 (continued) the "methodology" section was updated. 3-9 the a3pe3000 "208-pin pqfp" pin table was updated. 4-6 revision changes page
proasic3e flash family fpgas revision 13 5-11 datasheet categories categories in order to provide the latest information to des igners, some datasheet parameters are published before data has been fully characterized from silicon devices. the data provided for a given device, as highlighted in the "proasic3e device status" table on page ii , is designated as ei ther "product brief," "advance," "preliminary," or "production." the definitions of these categories are as follows: product brief the product brief is a summarized version of a data sheet (advance or producti on) and contains general product information. this document gives an overvi ew of specific device and family information. advance this version contains initial estimated information bas ed on simulation, other products, devices, or speed grades. this information can be used as estimates, bu t not for production. this label only applies to the dc and switching characteristics chapter of the da tasheet and will only be used when the data has not been fully characterized. preliminary the datasheet contains information based on simulation and/or initial characterization. the information is believed to be correct, but changes are possible. production this version contains information that is considered to be final. export administration regulations (ear) the products described in this document are subj ect to the export administ ration regulations (ear). they could require an approved export license prior to export from the united st ates. an export includes release of product or disclosure of technology to a foreign national inside or outside the united states. safety critical, life support, and high-reliability applications policy the products described in this advance status document may not have completed the microsemi qualification process. products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. it is the responsibility of each customer to ensure the fitne ss of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. consult the microsemi soc products group terms and conditions for specific liability exclusions relating to life-support applications. a reliability report covering all of the soc products group?s products is available at http://www.microsemi.com/s oc/documents/ort_report.pdf . microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. contact your local sales office for additional reliability information.
51700097-13/01.13 ? 2012 microsemi corporation. all rights reserved. microsemi and the microsemi logo are trademarks of microsemi corporation. all other trademarks and service marks are the property of their respective owners. microsemi corporation (nasdaq: mscc) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security ; enterprise and communications; and industrial and alternative energy markets. products incl ude high-performance, high-reliability analog and rf devices, mixed signal and rf integrated circuits, customizable socs, fpgas, and complete subsystems. microsemi is headquarter ed in aliso viejo, calif. learn more at www.microsemi.com . microsemi corporate headquarters one enterprise, aliso viejo ca 92656 usa within the usa: +1 (949) 380-6100 sales: +1 (949) 380-6136 fax: +1 (949) 215-4996


▲Up To Search▲   

 
Price & Availability of A3PE600-2PQ100ES

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X